
Dune Documentation

Jérémie Dimino

Mar 28, 2024

CONTENTS

1 Getting Started and Core Concepts 3
1.1 Overview . 3
1.2 Quickstart . 5
1.3 Command-Line Interface . 12

2 How-to Guides 21
2.1 How to Install Dune . 21
2.2 How to Set up Automatic Formatting . 22
2.3 How to Generate Opam Files from dune-project . 23
2.4 Cross-Compilation . 25
2.5 Dealing with Foreign Libraries . 26
2.6 Generating Documentation . 32
2.7 How to Load Additional Files at Runtime . 34
2.8 Instrumentation . 39
2.9 JavaScript Compilation With Js_of_ocaml . 40
2.10 JavaScript Compilation With Melange . 41
2.11 Virtual Libraries & Variants . 45
2.12 Writing and Running Tests . 47
2.13 How to Bundle Resources . 57
2.14 How to Load a Project in a Toplevel . 57
2.15 Using Rule Generation . 58

3 Reference Manual 63
3.1 dune . 63
3.2 dune-project . 88
3.3 dune-workspace . 98
3.4 config . 100
3.5 Lexical Conventions . 102
3.6 Actions . 104
3.7 Ordered Set Language . 110
3.8 Boolean Language . 111
3.9 Predicate Language . 111
3.10 Library Dependencies . 111
3.11 Preprocessing Specification . 112
3.12 Cram Tests . 114
3.13 Scopes . 117
3.14 Variables . 118
3.15 Dependency Specification . 121
3.16 OCaml Flags . 123
3.17 Sandboxing . 123

i

3.18 Locks . 124
3.19 Diffing and Promotion . 125
3.20 Package Specification . 126
3.21 Aliases . 128
3.22 Foreign Sources, Archives, and Objects . 131
3.23 Command Line Interface . 134
3.24 Dune Libraries . 136
3.25 Dune Cache . 139
3.26 Coq . 140
3.27 Dune RPC . 152
3.28 Packages . 153
3.29 Findlib Integration . 154

4 Explanation 157
4.1 How Preprocessing Works . 157
4.2 The OCaml Ecosystem . 158
4.3 How Dune integrates with opam . 159
4.4 How Dune Uses Dune to Build Dune . 161
4.5 The Dune Mental Model . 162

5 Advanced Topics 167
5.1 Dynamic Loading of Packages with Findlib . 167
5.2 Profiling Dune . 168
5.3 Package Version . 168
5.4 OCaml Syntax . 168
5.5 Variables for Artifacts . 168
5.6 Building an Ad Hoc .cmxs . 169

6 Miscellaneous 171
6.1 FAQ . 171
6.2 Goal of Dune . 175
6.3 Working on the Dune Codebase . 177

Index 191

ii

Dune Documentation

Dune is a build system for OCaml projects. Using it, you can build executables, libraries, run tests, and much more.

CONTENTS 1

Dune Documentation

2 CONTENTS

CHAPTER

ONE

GETTING STARTED AND CORE CONCEPTS

These documents should be the first ones read by new Dune users. They explain what Dune is, how it works, and how
to use it.

1.1 Overview

1.1.1 Introduction

Dune is a build system for OCaml (with support for Reason and Coq). It is not intended as a completely generic build
system that’s able to build any project in any language. On the contrary, it makes lots of choices in order to encourage
a consistent development style.

This scheme is inspired from the one used inside Jane Street and adapted to the opam world. It has matured over a long
time and is used daily by hundreds of developers, which means that it is highly tested and productive.

When using Dune, you give very little, high-level information to the build system, which in turn takes care of all the
low-level details from the compilation of your libraries, executables, and documentation to the installation, setting up
of tests, and setting up development tools such as Merlin, etc.

In addition to the normal features expected from an OCaml build system, Dune provides a few additional ones that
separate it from the crowd:

• You never need to tell Dune the location of things such as libraries. Dune will discover them automatically. In
particular, this means that when you want to reorganise your project, you need nothing other than to rename your
directories, Dune will do the rest.

• Things always work the same whether your dependencies are local or installed on the system. In particular, this
means that you can insert the source for a project dependency in your working copy, and Dune will start using it
immediately. This makes Dune a great choice for multi-project development.

• Cross-platform: as long as your code is portable, Dune will be able to cross-compile it. Read more in the Cross-
Compilation section.

• Release directly from any revision: Dune needs no setup stage. To release your project, simply point to a specific
Git tag (named revision). Of course, you can add some release steps if you’d like, but it isn’t necessary. For more
information, please refer to dune-release.

The first section below defines some terms used in this manual. The second section specifies the Dune metadata format,
and the third one describes how to use the dune command.

3

https://github.com/tarides/dune-release

Dune Documentation

1.1.2 Terminology

root
The top-most directory in a GitHub repo, workspace, and project, differentiated by variables such as
%{workspace_root} and %{project_root}. Dune builds things from this directory. It knows how to build
targets that are descendants of the root. Anything outside of the tree starting from the root is considered part of
the installed world. Refer to Finding the Root to learn how the workspace root is determined.

workspace
The subtree starting from each root. It can contain any number of projects that will be built simultaneously by
Dune, and it must contain a dune-workspace file.

project
A collection of source files that must include a dune-project file. It may also contain one or more packages. A
project consists in a hierarchy of directories. Every directory (at the root, or a subdirectory) can contain a dune
file that contains instructions to build files in that directory. Projects can be shared between different applications.

package
A set of libraries and executables that opam builds and installs as one.

installed world
Anything outside of the workspace. Dune doesn’t know how to build things in the installed world.

installation
The action of copying build artifacts or other files from the <root>/_build directory to the installed world.

scope
Defined by any directory that contains at least one <package>.opam file. Typically, every project defines a
single scope that is a subtree starting from this directory. Moreover, scopes are separate from your project’s
dependencies. The scope also determines where private items are visible. Private items include libraries or
binaries that will not be installed. See Scopes for more details.

build context
A specific configuration written in a dune-workspace file, which has a corresponding subdirectory in the <root>/
_build directory. It contains all the workspace’s build artifacts. Without this specific configuration from the
user, there is always a default build context that corresponds to the executed Dune environment.

build context root
The root of a build context named foo is <root>/_build/<foo>.

build target
Specified on the command line, e.g., dune build <target_path.exe>. All targets that Dune knows how to
build live in the _build directory.

alias
A build target that doesn’t produce any file and has configurable dependencies. Targets starting with @ on the
command line are interpreted as aliases (e.g., dune build @src/runtest). Aliases are per-directory. See
Aliases.

environment
Determines the default values of various parameters, such as the compilation flags. In Dune, each directory has
an environment attached to it. Inside a scope, each directory inherits the environment from its parent. At the root
of every scope, a default environment is used. At any point, the environment can be altered using an env stanza.

build profile
A global setting that influences various defaults. It can be set from the command line using --profile
<profile> or from dune-workspace files. The following profiles are standard:

• release which is the profile used for opam releases

• dev which is the default profile when none is set explicitly, it has stricter warnings than the release one

4 Chapter 1. Getting Started and Core Concepts

Dune Documentation

dialect
An alternative frontend to OCaml (such as ReasonML). It is described by a pair of file extensions, one corre-
sponding to interfaces and one to implementations. It can use the standard OCaml syntax, or it can specify an
action to convert from a custom syntax to a binary OCaml abstract syntax tree. It can also specify a custom
formatter.

placeholder substitution
A build step in which placeholders such as %%VERSION%% in source files are replaced by concrete values such as
1.2.3. It is performed by dune subst for development versions and dune-release for releases.

1.1.3 Project Layout

A typical Dune project will have a dune-project and one or more <package>.opam files at the root as well as dune
files wherever interesting things are: libraries, executables, tests, documents to install, etc.

We recommended organising your project to have exactly one library per directory. You can have several executables
in the same directory, as long as they share the same build configuration. If you’d like to have multiple executables
with different configurations in the same directory, you will have to make an explicit module list for every executable
using modules.

1.1.4 History

Dune started as jbuilder in late 2016. When its 1.0.0 version was released in 2018, the name has been changed to
dune. It used to be configured with jbuild and jbuild-workspace files with a slightly different syntax. After a
transition period, this syntax is not supported anymore.

1.2 Quickstart

This document gives simple usage examples of Dune. You can also look at examples for complete examples of projects
using Dune with CRAM stanzas.

To try these examples, you will need to have Dune installed. See How to Install Dune.

1.2.1 Initializing Projects

The following subsections illustrate basic usage of the dune init proj subcommand. For more documentation, see
Initializing Components and the inline help available from dune init --help.

Initializing an Executable

To initialize a project that will build an executable program, run the following (replacing project_namewith the name
of your project):

$ dune init proj project_name

This creates a project directory that includes the following contents:

project_name/
dune-project
test

(continues on next page)

1.2. Quickstart 5

https://github.com/tarides/dune-release
https://github.com/ocaml/dune/tree/master/example
https://ocaml.org/p/craml/1.0.0

Dune Documentation

(continued from previous page)

dune
test_project_name.ml

lib
dune

bin
dune
main.ml

project_name.opam

Now, enter your project’s directory:

$ cd project_name

Then, you can build your project with:

$ dune build

You can run your tests with:

$ dune test

You can run your program with:

$ dune exec project_name

This simple project will print “Hello World” in your shell.

The following itemization of the generated content isn’t necessary to review at this point. But whenever you are ready,
it will provide jump-off points from which you can dive deeper into Dune’s capabilities:

• The dune-project file specifies metadata about the project, including its name, packaging data (including de-
pendencies), and information about the authors and maintainers. Open this in your editor to fill in the placeholder
values. See dune-project for details.

• The test directory contains a skeleton for your project’s tests. Add to the tests by editing test/
test_project_name.ml. See Writing and Running Tests for details on testing.

• The lib directory will hold the library you write to provide your executable’s core functionality. Add modules to
your library by creating new .ml files in this directory. See library for details on specifying libraries manually.

• The bin directory holds a skeleton for the executable program. Within the modules in this directory, you can
access the modules in your lib under the namespace project_name.Mod, where project_name is replaced
with the name of your project and Mod corresponds to the name of the file in the lib directory. You can run
the executable with dune exec project_name. See Building a Hello World Program From Scratch for an
example of specifying an executable manually and executable for details.

• The project_name.opam file will be freshly generated from the dune-project file whenever you build your
project. You shouldn’t need to worry about this, but you can see How Dune integrates with opam for details.

• The dune files in each directory specify the component to be built with the files in that directory. For details on
dune files, see dune.

6 Chapter 1. Getting Started and Core Concepts

Dune Documentation

Initializing a Library

To initialize a project for an OCaml library, run the following (replacing project_namewith the name of your project):

$ dune init proj --kind=lib project_name

This creates a project directory that includes the following contents:

project_name/
dune-project
lib

dune
test

dune
test_project_name.ml

project_name.opam

Now, enter your project’s directory:

$ cd project_name

Then, you can build your project with:

$ dune build

You can run your tests with:

$ dune test

All of the subcomponents generated are the same as those described in Initializing an Executable, with the following
exceptions:

• There is no bin directory generated.

• The dune file in the lib directory specifies that the library should be public. See library for details.

1.2.2 Building a Hello World Program From Scratch

Create a new directory within a Dune project (Initializing an Executable). Since OCaml is a compiled language, first
create a dune file in Nano, Vim, or your preferred text editor. Declare the hello_world executable by including the
following stanza (shown below). Name this initial file dune and save it.

(executable
(name hello_world))

Create a second file containing the following code and name it hello_world.ml (including the .ml extension). It will
implement the executable stanza in the dune file when built.

print_endline "Hello, world!"

Next, build your new program in a shell using this command:

$ dune build hello_world.exe

1.2. Quickstart 7

Dune Documentation

This will create a directory called _build and build the program: _build/default/hello_world.exe. Note that
native code executables will have the .exe extension on all platforms (including non-Windows systems).

Finally, run it with the following command to see that it worked. In fact, the executable can both be built and run in a
single step:

$ dune exec -- ./hello_world.exe

Voila! This should print “Hello, world!” in the command line.

1.2.3 Building a Hello World Program Using Lwt

Lwt is a concurrent library in OCaml.

In a directory of your choice, write this dune file:

(executable
(name hello_world)
(libraries lwt.unix))

This hello_world.ml file:

Lwt_main.run (Lwt_io.printf "Hello, world!\n")

And build it with:

$ dune build hello_world.exe

The executable will be built as _build/default/hello_world.exe

1.2.4 Building a Hello World Program Using Core and Jane Street PPXs

Write this dune file:

(executable
(name hello_world)
(libraries core)
(preprocess (pps ppx_jane)))

This hello_world.ml file:

open Core

let () =
Sexp.to_string_hum [%sexp ([3;4;5] : int list)]
|> print_endline

And build it with:

$ dune build hello_world.exe

The executable will be built as _build/default/hello_world.exe

8 Chapter 1. Getting Started and Core Concepts

Dune Documentation

1.2.5 Defining a Library Using Lwt and ocaml-re

Write this dune file:

(library
(name mylib)
(public_name mylib)
(libraries re lwt))

The library will be composed of all the modules in the same directory. Outside of the library, module Foo will be
accessible as Mylib.Foo, unless you write an explicit mylib.ml file.

You can then use this library in any other directory by adding mylib to the (libraries ...) field.

1.2.6 Building a Hello World Program in Bytecode

In a directory of your choice, write this dune file:

;; This declares the hello_world executable implemented by hello_world.ml
;; to be build as native (.exe) or bytecode (.bc) version.
(executable
(name hello_world)
(modes byte exe))

This hello_world.ml file:

print_endline "Hello, world!"

And build it with:

$ dune build hello_world.bc

The executable will be built as _build/default/hello_world.bc. The executable can be built and run in a single
step with dune exec ./hello_world.bc. This bytecode version allows the usage of ocamldebug.

1.2.7 Setting the OCaml Compilation Flags Globally

Write this dune file at the root of your project:

(env
(dev
(flags (:standard -w +42)))

(release
(ocamlopt_flags (:standard -O3))))

dev and release correspond to build profiles. The build profile can be selected from the command line with --profile
foo or from a dune-workspace file by writing:

(profile foo)

1.2. Quickstart 9

Dune Documentation

1.2.8 Using Cppo

Add this field to your library or executable stanzas:

(preprocess (action (run %{bin:cppo} -V OCAML:%{ocaml_version} %{input-file})))

Additionally, if you want to include a config.h file, you need to declare the dependency to this file via:

(preprocessor_deps config.h)

Using the .cppo.ml Style Like the ocamlbuild Plugin

Write this in your dune file:

(rule
(targets foo.ml)
(deps (:first-dep foo.cppo.ml) <other files that foo.ml includes>)
(action (run %{bin:cppo} %{first-dep} -o %{targets})))

1.2.9 Defining a Library with C Stubs

Assuming you have a file called mystubs.c, that you need to pass -I/blah/include to compile it and -lblah at
link time, write this dune file:

(library
(name mylib)
(public_name mylib)
(libraries re lwt)
(foreign_stubs
(language c)
(names mystubs)
(flags -I/blah/include))

(c_library_flags (-lblah)))

1.2.10 Defining a Library with C Stubs using pkg-config

Same context as before, but using pkg-config to query the compilation and link flags. Write this dune file:

(library
(name mylib)
(public_name mylib)
(libraries re lwt)
(foreign_stubs
(language c)
(names mystubs)
(flags (:include c_flags.sexp)))

(c_library_flags (:include c_library_flags.sexp)))

(rule
(targets c_flags.sexp c_library_flags.sexp)
(action (run ./config/discover.exe)))

10 Chapter 1. Getting Started and Core Concepts

Dune Documentation

Then create a config subdirectory and write this dune file:

(executable
(name discover)
(libraries dune-configurator))

as well as this discover.ml file:

module C = Configurator.V1

let () =
C.main ~name:"foo" (fun c ->
let default : C.Pkg_config.package_conf =

{ libs = ["-lgst-editing-services-1.0"]
; cflags = []
}

in
let conf =
match C.Pkg_config.get c with
| None -> default
| Some pc ->
match (C.Pkg_config.query pc ~package:"gst-editing-services-1.0") with
| None -> default
| Some deps -> deps

in

C.Flags.write_sexp "c_flags.sexp" conf.cflags;
C.Flags.write_sexp "c_library_flags.sexp" conf.libs)

1.2.11 Using a Custom Code Generator

To generate a file foo.ml using a program from another directory:

(rule
(targets foo.ml)
(deps (:gen ../generator/gen.exe))
(action (run %{gen} -o %{targets})))

1.2.12 Defining Tests

Write this in your dune file:

(test (name my_test_program))

And run the tests with:

$ dune runtest

It will run the test program (the main module is my_test_program.ml) and error if it exits with a nonzero code.

In addition, if a my_test_program.expected file exists, it will be compared to the standard output of the test program
and the differences will be displayed. It is possible to replace the .expected file with the last output using:

1.2. Quickstart 11

Dune Documentation

$ dune promote

1.2.13 Building a Custom Toplevel

A toplevel is simply an executable calling Topmain.main () and linked with the compiler libraries and -linkall.
Moreover, currently toplevels can only be built in bytecode.

As a result, write this in your dune file:

(executable
(name mytoplevel)
(libraries compiler-libs.toplevel mylib)
(link_flags (-linkall))
(modes byte))

And write this in mytoplevel.ml:

let () = exit (Topmain.main ())

1.3 Command-Line Interface

This section describes using dune from the shell.

1.3.1 Initializing Components

NOTE: The dune init command is still under development and subject to change.

Dune’s init subcommand provides limited support for generating Dune file stanzas and folder structures to define
components. The dune init command can be used to quickly add new projects, libraries, tests, and executables
without having to manually create Dune files in a text editor, or it can be composed to programmatically generate parts
of a multi-component project.

Initializing a Project

You can run the following command to initialize a new Dune project that uses the base and cmdliner libraries and
supports inline tests:

$ dune init proj myproj --libs base,cmdliner --inline-tests --ppx ppx_inline_test

This creates a new directory called myproj, including subdirectories and dune files for library, executable, and test
components. Each component’s dune file will also include the declarations required for the given dependencies.

This is the quickest way to get a basic dune project up and building.

12 Chapter 1. Getting Started and Core Concepts

Dune Documentation

Initializing an Executable

To add a new executable to a dune file in the current directory (creating the file if necessary), run

$ dune init exe myexe --libs base,containers,notty --ppx ppx_deriving

This will add the following stanza to the dune file:

(executable
(name main)
(libraries base containers notty)
(preprocess
(pps ppx_deriving)))

Initializing a Library

Run the following command to create a new directory src, initialized as a library:

$ dune init lib mylib src --libs core --inline-tests --public

This will ensure the file ./src/dune contains the below stanza (creating the file and directory, if necessary):

(library
(public_name mylib)
(inline_tests)
(name mylib)
(libraries core)
(preprocess
(pps ppx_inline_tests)))

Initializing Components in a Specified Directory

All init subcommands take an optional PATH argument, which should be a path to a directory. When supplied, the
component will be created in the specified directory. E.g., to initialize a project in the current working directory, run

$ dune init proj my_proj .

To initialize a project in a directory in some nested path, run

$ dune init proj my_proj path/to/my/project

If the specified directory does not already exist, it will be created.

1.3. Command-Line Interface 13

Dune Documentation

Learning More About the init Commands

Consult the manual page using the `dune init --help command for more details.

1.3.2 Finding the Root

The root of the current workspace is determined by looking up a dune-workspace or dune-project file in the current
directory and its parent directories. Dune requires at least one of these two files to operate.

If it isn’t in the current directory, Dune prints out the root when starting:

$ dune runtest
Entering directory '/home/jdimino/code/dune'
...

This message can be suppressed with the --no-print-directory command line option (as in GNU make).

More precisely, Dune will choose the outermost ancestor directory containing a dune-workspace file, which is used
to mark the root of the current workspace. If no dune-workspace file is present, the same strategy applies with
dune-project files.

In case of a mix of dune-workspace and dune-project files, workspace files take precedence over project files in the
sense that if a dune-workspace file is found, only parent dune-workspace files will be considered when looking
for the root; however, if a dune-project file is found both parent dune-workspace and dune-project files will be
considered.

A dune-workspace file is also a configuration file. Dune will read it unless the --workspace command line option
is used. See dune-workspace for the syntax of this file. The scope of dune-project files is wider than the scope
dune-workspace files. For instance, a dune-project file may specify the name of the project which is a universal
property of the project, while a dune-workspace file may specify an opam switch name which is valid only on a given
machine. For this reason, it is common and recommended to commit dune-project files in repositories, while it is
less common to commit dune-workspace files.

Current Directory

If the previous rule doesn’t apply, i.e., no ancestor directory has a file named dune-workspace, then the current
directory will be used as root.

Forcing the Root (for Scripts)

You can pass the --root option to dune to select the root explicitly. This option is intended for scripts to disable the
automatic lookup.

Note that when using the --root option, targets given on the command line will be interpreted relative to the given
root, not relative to the current directory, as this is normally the case.

14 Chapter 1. Getting Started and Core Concepts

Dune Documentation

1.3.3 Interpretation of Targets

This section describes how Dune interprets the targets provided on the command line. When no targets are specified,
Dune builds the default alias.

Resolution

All targets that Dune knows how to build live in the _build directory. Although, some are sometimes copied
to the source tree for the need of external tools. These includes <package>.install files when either -p or
--promote-install-files is passed on the command line.

As a result, if you want to ask Dune to produce a particular .exe file you would have to type:

$ dune build _build/default/bin/prog.exe

However, for convenience, when a target on the command line doesn’t start with _build, Dune expands it to the
corresponding target in all the build contexts that Dune knows how to build. When using --verbose, it prints out the
actual set of targets upon starting:

$ dune build bin/prog.exe --verbose
...
Actual targets:
- _build/default/bin/prog.exe
- _build/4.03.0/bin/prog.exe
- _build/4.04.0/bin/prog.exe

If a target starts with the @ sign, it is interpreted as an alias. See Aliases.

Variables for Artifacts

It’s possible to build specific artifacts by using the corresponding variable on the command line. For example:

dune build '%{cmi:foo}'

See Variables for Artifacts for more information.

1.3.4 Finding External Libraries

When a library isn’t available in the workspace, Dune will search for it in the installed world and expect it to be already
compiled.

It looks up external libraries using a specific list of search paths, and each build context has a specific list of search
paths.

When running inside an opam environment, Dune will look for installed libraries in $OPAM_SWITCH_PREFIX/lib.
This includes both opam build context configured via the dune-workspace file and the default build context when the
variable $OPAM_SWITCH_PREFIX is set.

Otherwise, Dune takes the directory where ocamlc was found and appends ../lib` to it. For instance, if ocamlc is
found in /usr/bin, Dune looks for installed libraries in /usr/lib.

In addition to the two above rules, Dune always inspects the OCAMLPATH environment variable and uses the paths
defined in this variable. OCAMLPATH always has precedence and can have different values in different build contexts.
For instance, you can set it manually in a specific build context via the dune-workspace file.

1.3. Command-Line Interface 15

Dune Documentation

1.3.5 Running Tests

There are two ways to run tests:

• dune build @runtest

• dune test (or the more explicit dune runtest)

The two commands are equivalent, and they will run all the tests defined in the current directory and its children
directories recursively. You can also run the tests in a specific sub-directory and its children by using:

• dune build @foo/bar/runtest

• dune test foo/bar (or dune runtest foo/bar)

1.3.6 Watch Mode

The dune build and dune runtest commands support a -w (or --watch) flag. When it’s passed, Dune will perform
the action as usual and then wait for file changes and rebuild (or rerun the tests). This feature requires inotifywait
or fswatch to be installed.

1.3.7 Launching the Toplevel (REPL)

Dune supports launching a utop instance with locally defined libraries loaded.

$ dune utop <dir> -- <args>

Where <dir> is a directory under which Dune searches (recursively) for all libraries that will be loaded. <args> will
be passed as arguments to the utop command itself. For example, dune utop lib -- -implicit-bindings will
start utop, with the libraries defined in lib and implicit bindings for toplevel expressions.

Dune also supports loading individual modules unsealed by their signatures into the toplevel. This is accomplished by
launching a toplevel and then asking dune to return the toplevel directives needed to evaluate the module:

$ utop
use_output "dune ocaml top-module path/to/module.ml";;

Requirements & Limitations

• Utop version >= 2.0 is required for this to work.

• This subcommand only supports loading libraries. Executables aren’t supported.

• Libraries that are dependencies of utop itself cannot be loaded. For example Camomile.

• Loading libraries that are defined in different directories into one utop instance isn’t possible.

16 Chapter 1. Getting Started and Core Concepts

https://github.com/diml/utop
https://github.com/yoriyuki/Camomile

Dune Documentation

1.3.8 Restricting the Set of Packages

Restrict the set of packages from your workspace that Dune can see with the --only-packages option:

$ dune build --only-packages pkg1,pkg2,... @install

This option acts as if you went through all the Dune files and commented out the stanzas referring to a package that
isn’t in the list given to dune.

1.3.9 Distributing Projects

Dune provides support for building and installing your project; however, it doesn’t provide helpers for distributing it.
It’s recommended to use dune-release for this purpose.

The common defaults are that your projects include the following files:

• README.md

• CHANGES.md

• LICENSE.md

If your project contains several packages, all the package names must be prefixed by the shortest one.

1.3.10 dune subst

One of the features dune-release provides is watermarking; it replaces various strings of the form %%ID%% in all your
project files before creating a release tarball or when the opam user pins the package.

This is especially interesting for the VERSIONwatermark, which gets replaced by the version obtained from the Version-
Control System (VCS). For instance, if you’re using Git, dune-release invokes this command to find out the version:

$ git describe --always --dirty --abbrev=7
1.0+beta9-79-g29e9b37

If no VCS is detected, dune subst will do nothing.

Projects using Dune usually only need dune-release for creating and publishing releases. However, they may still
substitute the watermarks when the user pins the package. To help with this, Dune provides the subst sub-command.

dune subst performs the same substitution that dune-release does with the default configuration, i.e., calling dune
subst at the root of your project will rewrite all your project files.

More precisely, it replaces the following watermarks in the source files:

• NAME, the name of the project

• VERSION, output of git describe --always --dirty --abbrev=7

• VERSION_NUM, same as VERSION but with a potential leading v or V dropped

• VCS_COMMIT_ID, commit hash from the vcs

• PKG_MAINTAINER, contents of the maintainer field from the opam file

• PKG_AUTHORS, contents of the authors field from the opam file

• PKG_HOMEPAGE, contents of the homepage field from the opam file

• PKG_ISSUES, contents of the issues field from the opam file

• PKG_DOC, contents of the doc field from the opam file

1.3. Command-Line Interface 17

https://github.com/samoht/dune-release

Dune Documentation

• PKG_LICENSE, contents of the license field from the opam file

• PKG_REPO, contents of the repo field from the opam file

The project name is obtained by reading the dune-project file in the directory where dune subst is called. The
dune-project file must exist and contain a valid (name ...) field.

Note that dune subst is meant to be called from the opam file and behaves a bit different to other Dune commands.
In particular it doesn’t try to detect the root of the workspace and must be called from the root of the project.

1.3.11 Custom Build Directory

By default Dune places all build artifacts in the _build directory relative to the user’s workspace. However, one can
customize this directory by using the --build-dir flag or the DUNE_BUILD_DIR environment variable.

$ dune build --build-dir _build-foo

this is equivalent to:
$ DUNE_BUILD_DIR=_build-foo dune build

Absolute paths are also allowed
$ dune build --build-dir /tmp/build foo.exe

1.3.12 Installing a Package

Via opam

When releasing a package using Dune in opam, there’s nothing special to do. Dune generates a file called
<package-name>.install at the root of the project. This contains a list of files to install, and opam reads it in
order to perform the installation.

Manually

When not using opam, or when you want to manually install a package, you can ask Dune to perform the installation
via the install command:

$ dune install [PACKAGE]...

This command takes a list of package names to install. If no packages are specified, Dune will install all available
packages in the workspace. When several build contexts are specified via a dune-workspace file, Dune performs the
installation in all the build contexts.

Destination Directory

For a given build context, the installation directories are determined with a single scheme for all installation sections.
Taking the lib installation section as an example, the priorities of this scheme are as follows:

1. if an explicit --lib <path> argument is passed, use this path

2. if an explicit --prefix <path> argument is passed, use <path>/lib

3. if --lib <path> argument is passed before during dune compilation to ./configure, use this paths

4. if OPAM_SWITCH_PREFIX is present in the environment use $OPAM_SWITCH_PREFIX/lib

18 Chapter 1. Getting Started and Core Concepts

Dune Documentation

5. otherwise, fail

Relocation Mode

The installation can be done in specific mode (--relocation) for creating a directory that can be moved. In that case,
the installed executables will look up the package sites (cf How to Load Additional Files at Runtime) relative to its
location. The –prefix directory should be used to specify the destination.

If you’re using plugins that depend on installed libraries and aren’t executable dependencies, like libraries that need to
be loaded at runtime, you must copy the libraries manually to the destination directory.

1.3.13 Querying Merlin Configuration

Since Version 2.8, Dune no longer promotes .merlin files to the source directories. Instead, Dune stores these con-
figurations in the _build folder, and Merlin communicates directly with Dune to obtain its configuration via the ocaml-
merlin subcommand. The Merlin configuration is now stanza-specific, allowing finer control. The following commands
aren’t needed for normal Dune and Merlin use, but they can provide insightful information when debugging or config-
uring non-standard projects.

Printing the Configuration

It’s possible to manually query the generated configuration for debugging purposes:

$ dune ocaml merlin dump-config

This command prints the distinct configuration of each module present in the current directory. This directory must be
in a Dune workspace and the project must be already built. The configuration will be encoded as s-expressions, which
are used to communicate with Merlin.

Printing an Approximated .merlin

It’s also possible to print the current folder’s configuration in the Merlin configuration syntax by running the following
command:

$ dune ocaml dump-dot-merlin > .merlin

In that case, Dune prints only one configuration: the result of the configuration’s coarse merge in the current folder’s
various modules. This folder must be in a Dune workspace, and the project must be already built. Preprocessing
directives and other flags will be commented out and must be un-commented afterward. This feature doesn’t aim at
writing exact or correct .merlin files. Its sole purpose is to lessen the burden of writing the configuration from scratch.

Non-Standard Filenames

Merlin configuration loading is based on filenames, so if you have files that are preprocessed by custom rules before
they are built, they should respect the following naming convention: the unprocessed file should start with the name of
the resulting processed file followed by a dot. The rest does not matter. Dune uses only the name before the first dot to
match with available configurations.

For example, if you use the cppo preprocessor to generate the file real_module_name.ml, then the source file could
be named real_module_name.cppo.ml.

1.3. Command-Line Interface 19

Dune Documentation

1.3.14 Running a Coq Toplevel

See Running a Coq Toplevel.

20 Chapter 1. Getting Started and Core Concepts

CHAPTER

TWO

HOW-TO GUIDES

These guides will help you use Dune’s features in your project.

2.1 How to Install Dune

Dune is available as an Opam package. First, make sure that Opam is installed:

$ opam --version
2.1.5

Any version higher than 2.0.0 is supported, though preferably at least 2.1.0.

If Opam is not available, follow the official instructions on the Opam website to install it and then run its global setup
with opam init.

Note: Opam requires a “shell hook” to work properly. Make sure to set it up correctly during opam init. Otherwise
you will have to run eval $(opam env) every time you create an Opam switch or change directory.

Then, you can install Dune in an Opam switch using the following command:

$ opam install dune

After the command completes, the following should display a version number:

$ dune --version
3.12.1

Note: In most cases, when using Opam you will not need to install Dune by hand. Installing the project’s dependencies
will install it in the Opam switch.

21

https://opam.ocaml.org/doc/Install.html

Dune Documentation

2.2 How to Set up Automatic Formatting

This guide will show you how to configure Dune so that it can check the formatting of your source code.

Formatting is defined per project. This ensures that if a project is reused elsewhere, its formatting configuration will
not interfere.

2.2.1 Setting Up the Environment

First, let’s open the dune-project file. Make sure that the version specified in (lang dune X.Y) is at least 2.0.
Most formatting configuration happens in that file. If you want to format OCaml sources and dune files, you don’t have
anything to add. Otherwise, refer to the formatting stanza.

Next we need to install some code formatting tools. For OCaml code, this means installing OCamlFormat with opam
install ocamlformat. Formatting dune files is built into Dune and does not require any extra tools. For Reason
code, this uses the refmt tool which is already installed if you are using Reason syntax in your project. If your project
uses a dialect, a specific tool might be required.

Using OCamlFormat requires some configuration. Take note of the version returned by ocamlformat --version
(let’s name that X.Y.Z) and create an .ocamlformat file in the same directory as dune-project with the following
contents:

version=X.Y.Z
profile=default

The version line is checked by OCamlFormat and ensures that everybody contributing to the project uses the same
version.

Note that you do not have to add ocamlformat to your opam files.

2.2.2 Running the Formatters

Run the dune build @fmt command. It will format the source files in the corresponding project and display the
differences:

$ dune build @fmt
--- hello.ml
+++ hello.ml.formatted
@@ -1,3 +1 @@
-let () =
- print_endline
- "hello, world"
+let () = print_endline "hello, world"

Then it’s possible to accept the correction by calling dune promote to replace the source files with the corrected
versions.

$ dune promote
Promoting _build/default/hello.ml.formatted to hello.ml.

As usual with promotion, it’s possible to combine these two steps by running dune build @fmt --auto-promote.
This command can also be shortened to dune fmt. See Diffing and Promotion for more details.

22 Chapter 2. How-to Guides

https://github.com/ocaml-ppx/ocamlformat

Dune Documentation

2.2.3 Setting Up Your CI

To check formatting in CI, the precise set up depends on the CI system used, but in general it is easier to set up a
dedicated job that just installs dune and the formatting tools, rather than doing that as part of the jobs that run tests.

If you use ocaml-ci, you have nothing to do: a formatting job is set up automatically.

If you use setup-ocaml, you can use the lint-fmt extend listed in the README file.

2.3 How to Generate Opam Files from dune-project

This guide will show you how to configure Dune so that it generates opam files.

2.3.1 Declaring Package Dependencies

The goal of this first step is to add (package) stanzas in your dune-project file. These stanzas declare the metadata
that your package uses in the language of opam packages. See Declaring a Package.

The next step depends on whether you are starting from a clean slate (new package) or adapting an existing opam file.

For a New Package (No Existing Opam File)

If your project does not have any opam files, you will have to find your package dependencies. In the simple case,
collect all the libraries that appear in the (libraries) fields of your project and put this list in the (depends) field
of the corresponding (package). See The OCaml Ecosystem for the difference between libraries and packages.

Example: you have a library that looks like:

(library
(public_name frobnitz)
(libraries lwt fmt))

You can declare the package as:

(package
(name frobnitz)
(depends lwt fmt))

Also add common metadata using (authors), (maintainers), (license), (source), as well as a (synopsis)
and a (description) for

For an Existing Package

If you already have an opam file (or several of them), you can convert it by following the rules in package.

For example, if your opam file looks like:

opam-version: 2.0
authors: ["Anil Madhavapeddy" "Rudi Grinberg"]
maintainer: ["team@mirage.org"]
name: "cohttp-async"
synopsis: "HTTP client and server for the Async library"

(continues on next page)

2.3. How to Generate Opam Files from dune-project 23

https://ocaml.ci.dev/
https://github.com/ocaml/setup-ocaml

Dune Documentation

(continued from previous page)

description: "A _really_ long description"
license: "ISC"
bug-reports: "https://github.com/mirage/ocaml-cohttp/issues"
homepage: "https://github.com/mirage/ocaml-cohttp/"
dev-repo: "git+https://github.com/mirage/ocaml-cohttp.git"
build: [
["dune" "subst"] {dev}
[
"dune"
"build"
"-p"
name
"-j"
jobs
"@install"
"@runtest" {with-test}
"@doc" {with-doc}

]
]
depends: [

"dune" { >= "3.4" }
"odoc" { with-doc }
"cohttp" { >= "1.0.2" }
"conduit-async" { >= "1.0.3" }
"async" { >= "v0.10.0" }

]

You can express this as:

(source (github mirage/ocaml-cohttp))
(license ISC)
(authors "Anil Madhavapeddy" "Rudi Grinberg")
(maintainers "team@mirage.org")

(package
(name cohttp-async)
(synopsis "HTTP client and server for the Async library")
(description "A _really_ long description")
(depends
(cohttp (>= 1.0.2))
(conduit-async (>= 1.0.3))
(async (>= v0.10.0))))

24 Chapter 2. How-to Guides

Dune Documentation

General Notes and Tips

• Do not declare a dependency on the dune and odoc packages. Dune will generate them with the right constraints.

• For fields that are common between packages (like (authors) or (license)), you can use a global one rather
than replicate it between packages.

• If you use a platform such as GitHub you can use (source) as a shorthand instead of specifying
(bug_reports), (homepage), etc.

• (package) stanzas do not support all opam fields or complete syntax for dependency specifications. If the
package you are adapting requires this, keep the corresponding opam fields in a pkg.opam.template file. See
Packages.

• It is not necessary to specify (version), this will be added at release time if you use dune-release.

2.3.2 Generating Opam Files

If you have existing *.opam files, make a backup of them because the instructions in this section will overwrite them.

Now that you have declared package metadata in dune-project, you can add (generate_opam_files) in
(dune-project).

From now on, commands like dune build and dune runtest are going to regenerate the contents of opam files from
the metadata in (package) stanzas. If you only want to generate the opam file, run dune build <project_name>.
opam.

Run dune build once and observe that the opam files have been created or updated. Make sure to add these changes
to your version control system.

2.4 Cross-Compilation

Dune allows for cross-compilation by defining build contexts with multiple targets. Targets are specified by adding a
targets field to the build context definition.

targets takes a list of target name. It can be either:

• native, the native tools that can build binaries to run on the machine doing the build

• the name of an alternative toolchain

Note that at the moment, there is no official support for cross-compilation in OCaml. Dune supports the opam-cross-
<x> repositories from the OCaml-cross organization on GitHub, such as:

• opam-cross-windows

• opam-cross-android

• opam-cross-ios

In particular:

• to build Windows binaries using opam-cross-windows, write windows in the list of targets

• to build Android binaries using opam-cross-android, write android in the list of targets

• to build IOS binaries using opam-cross-ios, write ios in the list of targets

For example, the following workspace file defines three different targets for the default build context:

2.4. Cross-Compilation 25

https://github.com/tarides/dune-release
https://github.com/ocaml-cross/
https://github.com/ocaml-cross/opam-cross-windows
https://github.com/ocaml-cross/opam-cross-android
https://github.com/ocaml-cross/opam-cross-ios

Dune Documentation

(context (default (targets native windows android)))

This configuration defines three build contexts:

• default

• default.windows

• default.android

Note that the native target is always implicitly added when not present; however, dune build @install will skip
this context, i.e., default will only be used for building executables needed by the other contexts.

With such a setup, calling dune build @install will build all the packages three times.

Note that instead of writing a dune-workspace file, you can also use the -x command line option. Passing -x foo
to dune without having a dune-workspace file is the same as writing the following dune-workspace file:

(context (default (targets foo)))

If you have a dune-workspace and pass a -x foo option, foo will be added as target of all context stanzas.

2.4.1 How Does it Work?

In such a setup, binaries that need to be built and executed in the default.windows or default.android contexts
as part of the build will no longer be executed. Instead, all the binaries that will be executed come from the default
context. One consequence of this is that all preprocessing (PPX or otherwise) will be done using binaries built in the
default context.

To clarify this with an example, let’s assume that you have the following src/dune file:

(executable (name foo))
(rule (with-stdout-to blah (run ./foo.exe)))

When building _build/default/src/blah, dune will resolve ./foo.exe to _build/default/src/foo.exe as
expected. However, for _build/default.windows/src/blah dune will resolve ./foo.exe to _build/default/
src/foo.exe

Assuming that the right packages are installed or that your workspace has no external dependencies, Dune will be able
to cross-compile a given package without doing anything special.

Some packages might still have to be updated to support cross-compilation. For instance if the foo.exe program in
the previous example was using Sys.os_type, it should instead take it as a command line argument:

(rule (with-stdout-to blah (run ./foo.exe -os-type %{os_type})))

2.5 Dealing with Foreign Libraries

The OCaml programming language can interface with libraries written in foreign languages such as C. This section
explains how to do this with Dune. Note that it does not cover how to write the C stubs themselves, but this is covered
by the OCaml manual.

More precisely, this section covers:

• How to add C/C++ stubs to an OCaml library

• How to pass specific compilation flags for compiling the stubs

26 Chapter 2. How-to Guides

https://caml.inria.fr/pub/docs/manual-ocaml/intfc.html

Dune Documentation

• How to build a library with a foreign build system

In general, Dune has limited support for building source files written in foreign languages. This support is suitable
for most OCaml projects containing C stubs, but it is too limited for building complex libraries written in C or other
languages. For such cases, Dune can integrate a foreign build system into a normal Dune build.

2.5.1 Adding C/C++ Stubs to an OCaml Library

To add C stubs to an OCaml library, simply list the C files without the .c extension in the Foreign Stubs field. For
instance:

(library
(name mylib)
(foreign_stubs (language c) (names file1 file2)))

You can also add C++ stubs to an OCaml library by specifying (language cxx) instead.

Dune is currently not flexible regarding the extension of the C/C++ source files. They have to be .c for C files and
.cpp, .cc or .cxx for C++ files. If you have source files with other extensions and you want to build them with Dune,
you need to rename them first. Alternatively, you can use the foreign build sandboxing method described below.

Header Files

C/C++ source files may include header files in the same directory as the C/C++ source files or in the same directory
group when using include_subdirs.

The header files must have the .h extension.

Installing Header Files

It is sometimes desirable to install header files with the library. For that you have two choices: install them explicitly
with an install stanza or use the install_c_headers field of the library stanza. This field takes a list of header files
names without the .h extension. When a library installs header files, they are made visible to users of the library via
the include search path.

2.5.2 Stub Generation with Dune Ctypes

Beginning in Dune 3.0, it’s possible to use the ctypes field to generate bindings for C libraries without writing any C
code.

Note that Dune support for this feature is experimental and is not subject to backward compatibility guarantees.

To use Dune ctypes stub generation, you must provide two OCaml modules: a “type description” module for describing
the C library types and constants, and a “function description” module for describing the C library functions. Addi-
tionally, you must list any C headers and a method for resolving build and link flags.

If you’re binding a library distributed by your OS, you can use the pkg-config utility to resolve any build and link flags.
Alternatively, if you’re using a locally installed library or a vendored library, you can provide the flags manually.

The “type description” module must define a functor named Types with signature Ctypes.TYPE. The “function de-
scription” module must define a functor named Functions with signature Ctypes.FOREIGN.

2.5. Dealing with Foreign Libraries 27

https://github.com/ocamllabs/ocaml-ctypes
https://www.freedesktop.org/wiki/Software/pkg-config/

Dune Documentation

A Toy Example

To begin, you must declare the ctypes extension in your dune-project file:

(lang dune 3.15)
(using ctypes 0.3)

Next, here is a dune file you can use to define an OCaml program that binds a C system library called libfoo, which
offers foo.h in a standard location.

(executable
(name foo)
(libraries core)
; ctypes backward compatibility shims warn sometimes; suppress them
(flags (:standard -w -9-27))
(ctypes
(external_library_name libfoo)
(build_flags_resolver pkg_config)
(headers (include "foo.h"))
(type_description
(instance Types)
(functor Type_description))
(function_description
(concurrency unlocked)
(instance Functions)
(functor Function_description))
(generated_types Types_generated)
(generated_entry_point C)))

This field will introduce a module named C into your project, with the sub-modules Types and Functions that will
have your fully-bound C types, constants, and functions.

Given libfoo with the C header file foo.h:

#define FOO_VERSION 1

int foo_init(void);

int foo_fnubar(char *);

void foo_exit(void);

Your example type_description.ml file is:

open Ctypes

module Types (F : Ctypes.TYPE) = struct
open F

let foo_version = constant "FOO_VERSION" int
end

Your example function_description.ml file is:

28 Chapter 2. How-to Guides

Dune Documentation

open Ctypes

(* This Types_generated module is an instantiation of the Types
functor defined in the type_description.ml file. It's generated by
a C program that Dune creates and runs behind the scenes. *)

module Types = Types_generated

module Functions (F : Ctypes.FOREIGN) = struct
open F

let foo_init = foreign "foo_init" (void @-> returning int)

let foo_fnubar = foreign "foo_fnubar" (string_opt @-> returning int)

let foo_exit = foreign "foo_exit" (void @-> returning void)
end

Finally, the entry point of your executable named above, foo.ml, demonstrates how to access the bound C library
functions and values:

let () =
if (C.Types.foo_version <> 1) then

failwith "foo only works with libfoo version 1";

match C.Functions.foo_init () with
| 0 ->
C.Functions.foo_fnubar "fnubar!";
C.Functions.foo_exit ()

| err_code ->
Printf.eprintf "foo_init failed: %d" err_code;

;;

From here, one only needs to run dune build ./foo.exe to generate the stubs and build and link the example foo.
exe program.

Complete information about the ctypes combinators used above is available at the ctypes project.

Ctypes Field Reference

The ctypes field can be used in any executable(s) or library stanza.

((executable|library)
...
(ctypes
(external_library_name <package-name>)
(type_description
(instance <module-name>)
(functor <module-name>))

(function_description
(instance <module-name>)
(functor <module-name>)
<optional-function-description-fields>)

(generated_entry_point <module-name>)
(continues on next page)

2.5. Dealing with Foreign Libraries 29

https://github.com/ocamllabs/ocaml-ctypes

Dune Documentation

(continued from previous page)

<optional-ctypes-fields>)
)

• type_description: the functor module is a description of the C library types and constants written in the
ctypes domain-specific language you wish to bind. The instance module is the name of the instantiated
functor, inserted into the top-level of the generated_entry_point module.

• function_description: the functormodule is a description of the C library functions written in the ctypes
domain-specific language you wish to bind. The instance module is the name of the instantiated functor,
inserted into the top-level of the generated_entry_point module. The function_description field can
be repeated. This is useful if you need to specify sets of functions with different concurrency policies (see below).

The instantiated types described above can be accessed from the function descriptions by referencing them as the
module specified in optional generated_types field.

<optional-ctypes-fields> are:

• (build_flags_resolver <pkg_config|vendored-field>) tells Dune how to compile and link your for-
eign library. Specifying pkg_config will use the pkg-config tool to query the compilation and link flags for
external_library_name. For vendored libraries, provide the build and link flags using vendored field. If
build_flags_resolver is not specified, the default of pkg_config will be used.

• (generated_types <module-name>) is the name of an intermediate module. By default, it’s named
Types_generated. You can use this module to access the types defined in Type_description from your
Function_description module(s).

• (generated_entry_point <module-name>) is the name of a generated module that your instantiated Types
and Functions modules will instantiated under. We suggest calling it C.

• Headers can be added to the generated C files:

– (headers (include "include1" "include2" ...)) adds #include <include1>, #include
<include2>. It uses the Ordered Set Language.

– (headers (preamble <preamble>) adds directly the preamble. Variables can be used in <preamble>
such as %{read: }.

• Since the Dune’s ctypes feature is still experimental, it could be useful to add additional dependencies in or-
der to make sure that local headers or libraries are available: (deps <deps-conf list>). See Dependency
Specification for more details.

<optional-function-description-fields> are:

• (concurrency <sequential|unlocked|lwt_jobs|lwt_preemptive>) tells ctypes stubgen whether
to call your C functions with the runtime lock held or released. These correspond to the concurrency_policy
type in the ctypes library. If concurrency is not specified, the default of sequential will be used.

• (errno_policy <ignore_errno|return_errno>) specifies the errno_policy passed to the code generator.
With ignore_errno, the errno variable is not accessed or returned by function calls. With return_errno, all
functions will return the tuple (retval, errno).

<vendored-field> is:

• (vendored (c_flags <flags>) (c_library_flags <flags>)) provide the build and link flags for bind-
ing your vendored code. You must also provide instructions in your dune file on how to build the vendored
foreign library; see the foreign_library stanza. Usually the <flags> should contain :standard in order to add
the default flags used by the OCaml compiler for C files use_standard_c_and_cxx_flags.

30 Chapter 2. How-to Guides

https://www.freedesktop.org/wiki/Software/pkg-config/
https://ocaml.org/p/ctypes/0.20.1/doc/Cstubs/index.html#type-errno_policy

Dune Documentation

2.5.3 Foreign Build Sandboxing

When the build of a C library is too complicated to express in the Dune language, it’s possible to simply sandbox a
foreign build. Note that this method can be used to build other things, not just C libraries.

To do that, follow the following procedure:

• Put all the foreign code in a sub-directory

• Tell Dune not to interpret configuration files in this directory via an data_only_dirs stanza

• Write a custom rule that:

– depends on this directory recursively via source_tree

– invokes the external build system

– copies the generated files

– the C archive .a must be built with -fpic

– the libfoo.so must be copied as dllfoo.so, and no libfoo.so should appear, otherwise the dynamic
linking of the C library will be attempted. However, this usually fails because the libfoo.so isn’t available
at the time of the execution.

• Attach the C archive files to an OCaml library via Foreign Archives.

For instance, let’s assume that you want to build a C library libfoo using libfoo’s own build system and attach it to
an OCaml library called foo.

The first step is to put the sources of libfoo in your project, for instance in src/libfoo. Then tell Dune to consider
src/libfoo as raw data by writing the following in src/dune:

(data_only_dirs libfoo)

The next step is to setup the rule to build libfoo. For this, writing the following code src/dune:

(rule
(deps (source_tree libfoo))
(targets libfoo.a dllfoo.so)
(action
(no-infer
(progn
(chdir libfoo (run make))
(copy libfoo/libfoo.a libfoo.a)
(copy libfoo/libfoo.so dllfoo.so)))))

We copy the resulting archive files to the top directory where they can be declared as targets. The build is done in a
no-infer action because libfoo/libfoo.a and libfoo/libfoo.so are dependencies produced by an external build
system.

The last step is to attach these archives to an OCaml library as follows:

(library
(name bar)
(foreign_archives foo))

Then, whenever you use the bar library, you’ll also be able to use C functions from libfoo.

2.5. Dealing with Foreign Libraries 31

Dune Documentation

Limitations

When using the sandboxing method, the following limitations apply:

• The build of the foreign code will be sequential

• The build of the foreign code won’t be incremental

Both these points could be improved. If you’re interested in helping make this happen, please let the Dune team know
and someone will guide you.

Real Example

The re2 project uses this method to build the re2 C library. You can look at the file re2/src/re2_c/dune in this
project to see a full working example.

2.6 Generating Documentation

2.6.1 Prerequisites

Documentation in Dune is done courtesy of the odoc tool. Therefore, to generate documentation in Dune, you will
need to install this tool. This should be done with opam:

$ opam install odoc

2.6.2 Writing Documentation

Documentation comments will be automatically extracted from your OCaml source files following the syntax described
in the section Text formatting of the OCaml manual.

Additional documentation pages may be attached to a package using the documentation stanza.

2.6.3 Building Documentation

To generate documentation using the @doc alias, all that’s required to is to build this alias:

$ dune build @doc

An index page containing links to all the opam packages in your project can be found in:

$ open _build/default/_doc/_html/index.html

Documentation for private libraries may also be built with:

$ dune build @doc-private

But these libraries will not be in the main HTML listing above, since they don’t belong to any particular package, but
the generated HTML will still be found in _build/default/_doc/_html/<library>.

32 Chapter 2. How-to Guides

https://github.com/janestreet/re2
https://github.com/ocaml-doc/odoc
http://caml.inria.fr/pub/docs/manual-ocaml/ocamldoc.html

Dune Documentation

Documentation Stanza: Examples

The documentation stanza will attach all the .mld files in the current directory in a project with a single package.

(documentation)

This stanza will attach three .mld files to package foo. The .mld files should be named foo.mld, bar.mld, and
baz.mld

(documentation
(package foo)
(mld_files foo bar baz))

This stanza will attach all .mld files to the inferred package, excluding wip.mld, in the current directory:

(documentation
(mld_files :standard \ wip))

All .mld files attached to a package will be included in the generated .install file for that package. They’ll be
installed by opam.

Package Entry Page

The index.mld file (specified as index in mld_files) is treated specially by Dune. This will be the file used to
generate the entry page for the package, linked from the main package listing.

To generate pleasant documentation, we recommend writing an index.mld file with at least short description of your
package and possibly some examples.

If you do not write your own index.mld file, Dune will generate one with the entry modules for your package. But
this generated file will not be installed.

2.6.4 Passing Options to odoc

(env
(<profile>
(odoc <optional-fields>)))

See env for more details on the (env ...) stanza. <optional-fields> are:

• (warnings <mode>) specifies how warnings should be handled. <mode> can be: fatal or nonfatal. The
default value is nonfatal. This field is available since Dune 2.4.0 and requires odoc 1.5.0.

2.6.5 Local Documentation Search Using Sherlodoc

If Sherlodoc is installed, generated HTML documentation will include a search bar. It supports search by name, docu-
mentation and fuzzy type search.

In can be installed with:

$ opam install sherlodoc

2.6. Generating Documentation 33

https://github.com/ocaml-doc/odoc

Dune Documentation

2.7 How to Load Additional Files at Runtime

There are many ways for applications to load files at runtime and Dune provides a well-tested, key-in-hand portable
system for doing so. The Dune model works by defining sites where files will be installed and looked up at runtime.
At runtime, each site is associated to a list of directories which contain the files added in the site.

WARNING: This feature remains experimental and is subject to breaking changes without warning. It must be explicitly
enabled in the dune-project file with (using dune_site 0.1)

2.7.1 Sites

Defining a Site

A site is defined in a package package in the dune-project file. It consists of a name and a section (e.g lib, share,
etc) where the site will be installed as a sub-directory.

(lang dune 3.15)
(using dune_site 0.1)
(name mygui)

(package
(name mygui)
(sites (share themes)))

Adding Files to a Site

Here the package mygui defines a site named themes that will be located in the section share. This package can add
files to this site using the install stanza:

(install
(section (site (mygui themes)))
(files
(layout.css as default/layout.css)
(ok.png as default/ok.png)
(ko.png as default/ko.png)))

Another package mygui_material_theme can install files inside mygui directory for adding a new theme. Inside the
scope of mygui_material_theme the dune file contains:

(install
(section (site mygui themes))
(files
(layout.css as material/layout.css)
(ok.png as material/ok.png)
(ko.png as material/ko.png)))

The package mygui must be present in the workspace or installed.

Warning: Two files should not be installed by different packages at the same destination.

34 Chapter 2. How-to Guides

Dune Documentation

Getting the Locations of a Site at Runtime

The executable mygui will be able to get the locations of the themes site using the generate_sites_module stanza.

(executable
(name mygui)
(modules mygui mysites)
(libraries dune-site))

(generate_sites_module
(module mysites)
(sites mygui))

The generated module mysites depends on the library dune-site provided by Dune.

Then inside mygui.ml module the locations can be recovered and used:

(** Locations of the site for the themes *)
let themes_locations : string list = Mysites.Sites.themes

(** Merge the contents of the directories in [dirs] *)
let lookup_dirs dirs =
List.filter Sys.file_exists dirs
|> List.map (fun dir -> Array.to_list (Sys.readdir dir))
|> List.concat

(** Get the available themes *)
let find_available_themes () = lookup_dirs themes_locations

(** [lookup_file name dirs] finds the first file called [name] in [dirs] *)
let lookup_file filename dirs =
List.find_map
(fun dir ->
let filename' = Filename.concat dir filename in
if Sys.file_exists filename' then Some filename' else None)

dirs

(** [lookup_theme_file theme file] get the [file] of the [theme] *)
let lookup_theme_file file theme =
lookup_file (Filename.concat theme file) themes_locations

let get_layout_css = lookup_theme_file "layout.css"
let get_ok_ico = lookup_theme_file "ok.png"
let get_ko_ico = lookup_theme_file "ko.png"

2.7. How to Load Additional Files at Runtime 35

Dune Documentation

Tests

During tests, the files are copied into the sites through the dependency (package mygui) and (package
mygui_material_theme) as for other files in install stanza.

Installation

Installation is done simply with dune install; however, if one wants to install this tool to make it relocatable, one
can use dune install --relocatable --prefix $dir. The files will be copied to the directory $dir but the
binary $dir/bin/mygui will find the site location relative to its location. So even if the directory $dir is moved,
themes_locations will be correct.

For installation through opam, dune install must be invoked with the option --create-install-files which
creates an install file <pkg>.install and copy the file that needs substitution to an intermediary directory. The
<pkg>.opam file generated by Dune generate_opam_files does the right invocation.

Implementation Details

The main difficulty for sites is that their directories are found at different locations at different times:

• When the package is available locally, the location is inside _build

• When the package is installed, the location is inside the install prefix

• If a local package wants to install files to the site of another installed package the location is at the same time in
_build and in the install prefix of the second package.

With the last example, we see that the location of a site is not always a single directory, but rather it can consist of a
sequence of directories: ["dir1" ; "dir2"]. So a lookup must first look into dir1, then into dir2.

2.7.2 Plugins and Dynamic Loading of Packages

Dune allows you to define and load plugins without having to deal with specific compilation, installation directories,
dependencies, or the Dynlink_ module.

To define a plugin:

• The package defining the plugin interface must define a site where the plugins must live. Traditionally, this is in
(lib plugins), but it’s just a convention.

• Define a library that each plugin must use to register itself (or otherwise provide its functionality).

• Define the plugin in another package using the plugin stanza.

• Generate a module that may load all available plugins using the generated_module stanza.

Example

We demonstrate an example of the scheme above. The example consists of the following components:

Inside package app:

• An executable app, that we intend to extend with plugins

• A library app.registration which defines the plugin registration interface

• A generated module Sites which can load available plugins at runtime

36 Chapter 2. How-to Guides

Dune Documentation

• An executable app that will use the module Sites to load all the plugins

Inside package Plugin1, we declare a plugin using the app.registration api and the plugin stanza.

Directory structure

.
app.ml
dune
dune-project
plugin

dune
dune-project
plugin1_impl.ml

registration.ml

Main Executable (C)

• The dune-project file:

(lang dune 3.15)
(using dune_site 0.1)
(name app)

(package
(name app)
(sites (lib plugins)))

• The dune file:

(executable
(public_name app)
(modules sites app)
(libraries app.register dune-site dune-site.plugins))

(library
(public_name app.register)
(name registration)
(modules registration))

(generate_sites_module
(module sites)
(plugins (app plugins)))

The generated module sites depends here also on the library dune-site.plugins because the plugins optional field is
requested.

If the executable being created is an OCaml toplevel, then the libraries stanza needs to also include the dune-site.
toplevel library. This causes the loading to use the toplevel’s normal loading mechanism rather than Dynload.
loadfile (which is not allowed in toplevels).

• The module registration.ml of the library app.registration:

2.7. How to Load Additional Files at Runtime 37

Dune Documentation

let todo : (unit -> unit) Queue.t = Queue.create ()

• The code of the executable app.ml:

(* load all the available plugins *)
let () = Sites.Plugins.Plugins.load_all ()

let () = print_endline "Main app starts..."
(* Execute the code registered by the plugins *)
let () = Queue.iter (fun f -> f ()) Registration.todo

The Plugin “plugin1”

• The plugin/dune-project file:

(lang dune 3.15)
(using dune_site 0.1)

(generate_opam_files true)

(package
(name plugin1))

• The plugin/dune file:

(library
(public_name plugin1.plugin1_impl)
(name plugin1_impl)
(modules plugin1_impl)
(libraries app.register))

(plugin
(name plugin1)
(libraries plugin1.plugin1_impl)
(site (app plugins)))

• The code of the plugin plugin/plugin1_impl.ml:

let () =
print_endline "Registration of Plugin1";
Queue.add (fun () -> print_endline "Plugin1 is doing something...") Registration.todo

Running the Example

$ dune build @install && dune exec ./app.exe
Registration of Plugin1
Main app starts...
Plugin1 is doing something...

38 Chapter 2. How-to Guides

Dune Documentation

2.8 Instrumentation

In this section, we’ll explain how to define and use instrumentation backends (such as bisect_ppx or landmarks) so
that you can enable and disable coverage via dune-workspace files or by passing a command-line flag or environment
variable. In addition to providing an easy way to toggle instrumentation of your code, this setup avoids creating a hard
dependency on the precise instrumentation backend in your project.

2.8.1 Specifying What to Instrument

When an instrumentation backend is activated, Dune will only instrument libraries and executables for which the user
has requested instrumentation.

To request instrumentation, one must add the following field to a library or executable stanza:

(library
(name ...)
(instrumentation
(backend <name> <args>)
<optional-fields>))

The backend <name> can be passed into arguments using <args>.

This field can be repeated multiple times in order to support various backends. For instance:

(library
(name foo)
(modules foo)
(instrumentation (backend bisect_ppx --bisect-silent yes))
(instrumentation (backend landmarks)))

This will instruct Dune that when either the bisect_ppx or landmarks instrumentation is activated, the library should
be instrumented with this backend.

By default, these fields are simply ignored; however, when the corresponding instrumentation backend is activated,
Dune will implicitly add the relevant ppx rewriter to the list of ppx rewriters.

At the moment, it isn’t possible to instrument code that’s preprocessed via an action preprocessors. As these prepro-
cessors are quite rare nowadays, there is no plan to add support for them in the future.

<optional-fields> are:

• (deps <deps-conf list>) specifies extra instrumentation dependencies, for instance, if it reads a generated
file. The dependencies are only applied when the instrumentation is actually enabled. The specification of
dependencies is described in Dependency Specification.

2.8.2 Enabling/Disabling Instrumentation

Activating an instrumentation backend can be done via the command line or the dune-workspace file.

Via the command line, it is done as follows:

$ dune build --instrument-with <names>

Here <names> is a comma-separated list of instrumentation backends. For example:

2.8. Instrumentation 39

Dune Documentation

$ dune build --instrument-with bisect_ppx,landmarks

This will instruct Dune to activate the given backend globally, i.e., in all defined build contexts.

It’s also possible to enable instrumentation backends via the dune-workspace file, either globally or for specific builds
contexts.

To enable an instrumentation backend globally, type the following in your dune-workspace file:

(lang dune 3.15)
(instrument_with bisect_ppx)

or for each context individually:

(lang dune 3.15)
(context default)
(context (default (name coverage) (instrument_with bisect_ppx)))
(context (default (name profiling) (instrument_with landmarks)))

If both the global and local fields are present, the precedence is the same as the profile field: the per-context setting
takes precedence over the command-line flag, which takes precedence over the global field.

2.8.3 Declaring an Instrumentation Backend

Instrumentation backends are libraries with the special field (instrumentation.backend). This field instructs Dune
that the library can be used as an instrumentation backend, and it also provides the parameters specific to this backend.

Currently, Dune will only support ppx instrumentation tools, and the instrumentation library must specify the ppx
rewriters that instruments the code. This can be done as follows:

(library
...
(instrumentation.backend
(ppx <ppx-rewriter-name>)))

When such an instrumentation backend is activated, Dune will implicitly add the mentioned ppx rewriter to the list of
ppx rewriters for libraries and executables that specify this instrumentation backend.

2.9 JavaScript Compilation With Js_of_ocaml

Js_of_ocaml is a compiler from OCaml to JavaScript. The compiler works by translating OCaml bytecode to JS files.
The compiler can be installed with opam:

$ opam install js_of_ocaml-compiler

40 Chapter 2. How-to Guides

http://ocsigen.org/js_of_ocaml/

Dune Documentation

2.9.1 Compiling to JS

Dune has full support building Js_of_ocaml libraries and executables transparently. There’s no need to customize or
enable anything to compile OCaml libraries/executables to JS.

To build a JS executable, just define an executable as you would normally. Consider this example:

$ echo 'print_endline "hello from js"' > foo.ml

With the following dune file:

(executable (name foo) (modes js))

And then request the .js target:

$ dune build ./foo.bc.js
$ node _build/default/foo.bc.js
hello from js

Similar targets are created for libraries, but we recommend sticking to the executable targets.

If you’re using the Js_of_ocaml syntax extension, you must remember to add the appropriate PPX in the preprocess
field:

(executable
(name foo)
(modes js)
(preprocess (pps js_of_ocaml-ppx)))

2.9.2 Separate Compilation

Dune supports two modes of compilation:

• Direct compilation of a bytecode program to JavaScript. This mode allows Js_of_ocaml to perform whole-
program deadcode elimination and whole-program inlining.

• Separate compilation, where compilation units are compiled to JavaScript separately and then linked together.
This mode is useful during development as it builds more quickly.

The separate compilation mode will be selected when the build profile is dev, which is the default. It can also be
explicitly specified in an env stanza. See env for more information.

2.10 JavaScript Compilation With Melange

2.10.1 Introduction

Melange compiles OCaml to JavaScript. It produces one JavaScript file per OCaml module. Melange can be installed
with opam:

$ opam install melange

Dune can build projects using Melange, and it allows the user to produce JavaScript files by defining a melange.emit
stanza. Dune libraries can be used with Melange by adding melange to (modes ...) in the library stanza.

Melange support is still experimental in Dune and needs to be enabled in the dune-project file:

2.10. JavaScript Compilation With Melange 41

https://github.com/melange-re/melange

Dune Documentation

(using melange 0.1)

Once that’s in place, you can use the Melange mode in library stanzas melange.emit stanzas.

2.10.2 Simple Project

Let’s start by looking at a simple project with Melange and Dune. Subsequent sections explain the different concepts
used here in further detail.

First, make sure that the dune-project file specifies at least version 3.8 of the Dune language, and the Melange extension
is enabled:

(lang dune 3.15)
(using melange 0.1)

Next, write a dune file with a melange.emit stanza:

(melange.emit
(target output))

Finally, add a source file to build:

$ echo 'Js.log "hello from melange"' > hello.ml

After running dune build @melange or just dune build, Dune produces the following file structure:

.
_build

default
output

hello.js
dune
dune-project
hello.ml

The resulting JavaScript can now be run:

$ node _build/default/output/hello.js
hello from melange

2.10.3 Libraries

Adding Melange support to Dune libraries is done as follows:

• (modes melange): adding melange to modes is required. This field also supports the Ordered Set Language.

• (melange.runtime_deps <deps>): optionally, define any runtime dependencies using melange.
runtime_deps. This field is analog to the runtime_deps field used in melange.emit stanzas.

42 Chapter 2. How-to Guides

Dune Documentation

2.10.4 melange.emit

New in version 3.8.

The melange.emit stanza allows the user to produce JavaScript files from Melange libraries and entry-point modules.
It’s similar to the OCaml executable stanza, with the exception that there is no linking step.

(melange.emit
(target <target>)
<optional-fields>)

<target> is the name of the folder where resulting JavaScript artifacts will be placed. In particular, the folder will be
placed under _build/default/$path-to-directory-of-melange-emit-stanza.

The result of building a melange.emit stanza will match the file structure of the source tree. For example, given the
following source tree:

dune # (melange.emit (target output) (libraries lib))
app.ml
lib

dune # (library (name lib) (modes melange))
helper.ml

The resulting layout in _build/default/output will be as follows:

output
app.js
lib

lib.js
helper.js

<optional-fields> are:

• (alias <alias-name>) specifies an alias to which to attach the targets of the melange.emit stanza.

– These targets include the .js files generated by the stanza modules, the targets for the .js files of any
library that the stanza depends on, and any copy rules for runtime dependencies (see runtime_deps field
below).

– By default, all stanzas will have their targets attached to an alias melange. The behavior of this default
alias is exclusive: if an alias is explicitly defined in the stanza, the targets from this stanza will be excluded
from the melange alias.

– The targets of melange.emit are also attached to the Dune default alias (@all), regardless of whether the
(alias ...) field is present.

• (module_systems <module_systems>) specifies the JavaScript import and export format used. The values
allowed for <module_systems> are es6 and commonjs.

– es6 will follow JavaScript modules, and will produce import and export statements.

– commonjswill follow CommonJS modules, and will produce require calls and export values with module.
exports.

– If no extension is specified, the resulting JavaScript files will use .js. You can specify a different extension
with a pair (<module_system> <extension>), e.g. (module_systems (es6 mjs)).

– Multiple module systems can be used in the same field as long as their extensions are different. For example,
(module_systems commonjs (es6 mjs)) will produce one set of JavaScript files using CommonJS
and the .js extension, and another using ES6 and the .mjs extension.

2.10. JavaScript Compilation With Melange 43

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://nodejs.org/api/modules.html

Dune Documentation

• (modules <modules>) specifies what modules will be built with Melange. By default, if this field is not
defined, Dune will use all the .ml/.re files in the same directory as the dune file. This includes module sources
present in the file system as well as modules generated by user rules. You can restrict this list by using an explicit
(modules <modules>) field. <modules> uses the Ordered Set Language, where elements are module names
and don’t need to start with an uppercase letter. For instance, to exclude module Foo, use (modules :standard
\ foo).

• (libraries <library-dependencies>) specifies Melange library dependencies. Melange libraries can
only use the simple form, like (libraries foo pkg.bar). Keep in mind the following limitations:

– The re_export form is not supported.

– All the libraries included in <library-dependencies> have to support the melange mode (see the sec-
tion about libraries below).

• (package <package>) allows the user to define the JavaScript package to which the artifacts produced by the
melange.emit stanza will belong.

• (runtime_deps <paths-to-deps>) specifies dependencies that should be copied to the build folder together
with the .js files generated from the sources. These runtime dependencies can include assets like CSS files,
images, fonts, external JavaScript files, etc. runtime_deps adhere to the formats in Dependency Specification.
For example (runtime_deps ./path/to/file.css (glob_files_rec ./fonts/*)).

• (emit_stdlib <bool>) allows the user to specify whether the Melange standard library should be included
as a dependency of the stanza or not. The default is true. If this option is false, the Melange standard library
and runtime JavaScript files won’t be produced in the target directory.

• (promote <options>) promotes the generated .js files to the source tree. The options are the same as for the
rule promote mode. Adding (promote (until-clean)) to a melange.emit stanza will cause Dune to copy
the .js files to the source tree and dune clean to delete them.

• (preprocess <preprocess-spec>) specifies how to preprocess files when needed. The default is
no_preprocessing. Additional options are described in the Preprocessing Specification section.

• (preprocessor_deps (<deps-conf list>)) specifies extra preprocessor dependencies, e.g., if the prepro-
cessor reads a generated file. The dependency specification is described in the Dependency Specification section.

• (compile_flags <flags>) specifies compilation flags specific to melc, the main Melange executable.
<flags> is described in detail in the Ordered Set Language section. It also supports (:include ...) forms.
The value for this field can also be taken from env stanzas. It’s therefore recommended to add flags with e.g.
(compile_flags :standard <my options>) rather than replace them.

• (root_module <module>) specifies a root_module that collects all listed dependencies in libraries. See
the documentation for root_module in the library stanza.

• (allow_overlapping_dependencies) is the same as the corresponding field of library.

• (enabled_if <blang expression>) conditionally disables a melange emit stanza. The JavaScript files as-
sociated with the stanza won’t be built. The condition is specified using the Boolean Language.

44 Chapter 2. How-to Guides

Dune Documentation

2.10.5 Recommended Practices

Keep Bundles Small by Reducing the Number of melange.emit Stanzas

It is recommended to minimize the number of melange.emit stanzas that a project defines: using multiple melange.
emit stanzas will cause multiple copies of the JavaScript files to be generated if the same libraries are used across
them. As an example:

(melange.emit
(target app1)
(libraries foo))

(melange.emit
(target app2)
(libraries foo))

The JavaScript artifacts for library foowill be emitted twice in the _build folder. They will be present under _build/
default/app1 and _build/default/app2.

This can have unexpected impact on bundle size when using tools like Webpack or Esbuild, as these tools will not be
able to see shared library code as such, as it would be replicated across the paths of the different stanzas target folders.

Faster Builds With subdir and dirs Stanzas

Melange libraries might be installed from the npm package repository, together with other JavaScript packages. To
avoid having Dune inspect unnecessary folders in node_modules, it is recommended to explicitly include only the
folders that are relevant for Melange builds.

This can be accomplished by combining subdir and subdir stanzas in a dune file next to the node_modules folder.
The vendored_dirs stanza can be used to avoid warnings in Melange libraries during the application build. The
data_only_dirs stanza can be useful as well if you need to override the build rules in one of the packages.

(subdir
node_modules
(vendored_dirs reason-react)
(dirs reason-react))

2.11 Virtual Libraries & Variants

Virtual libraries correspond to Dune’s ability to compile parameterised libraries and delay the selection of concrete
implementations until linking an executable.

The feature introduces two kinds of libraries: virtual and implementations. A virtual library corresponds to an interface
(although it may contain partial implementation). An implementation of a virtual library fills in all unimplemented
modules in the virtual library.

The benefit of this partition is that other libraries may depend on and compile against the virtual library, and they
might only select concrete implementations for these virtual libraries when linking executables. An example where
this might be useful would be a virtual, cross-platform, clock library. This library would have clock.unix and
clock.win implementations. Executable using clock or libraries that use clock would conditionally select one of
the implementations, depending on the target platform.

2.11. Virtual Libraries & Variants 45

Dune Documentation

2.11.1 Virtual Library

To define a virtual library, a virtual_modules field must be added to an ordinary library stanza, and the version of
the Dune language must be at least 1.5. This field defines modules for which only an interface would be present (mli
only):

(library
(name clock)
;; clock.mli must be present, but clock.ml must not be
(virtual_modules clock))

Apart from this field, the virtual library is defined just like a normal library and may use all the other fields. A virtual
library may include other modules (with or without implementations), which is why it’s not a pure “interface” library.

Note: the virtual_modules field is not merged in modules, which represents the total set of modules in a library. If
a directory has more than one stanza and thus a modules field must be specified, virtual modules still need to be added
in modules.

2.11.2 Implementation

An implementation for a library is defined as:

(library
(name clock_unix)
;; clock.ml must be present, but clock.mli must not be
(implements clock))

The name field is slightly different for an implementation than it is for a normal library. The name is just an internal
name to refer to the implementation, it doesn’t correspond to any particular module like it does in the virtual library.

Other libraries may then depend on the virtual library as if it was a regular library:

(library
(name calendar)
(libraries clock))

But when it comes to creating an executable, we must now select a valid implementation for every virtual library that
we’ve used:

(executable
(name birthday-reminder)
(libraries
clock_unix ;; leaving this dependency will make dune loudly complain
calendar))

46 Chapter 2. How-to Guides

Dune Documentation

2.11.3 Variants

Variants were an experimental feature that were removed in Dune 2.6.

2.11.4 Default Implementation

A virtual library may select a default implementation, which is enabled after variant resolution if no suitable imple-
mentation has been found.

(library
(name time)
(virtual_modules time)
(default_implementation time-js))

The default implementation must live in the same package as the virtual library. In the example above, that would mean
that the time-js and time libraries must be in the same package

Before version 2.6, this feature was experimental and guarded under the library_variants language. In 2.6, this
feature was promoted to the stable Dune language, and all uses of (using library_variants) are forbidden since
2.6.

2.11.5 Limitations

The current implementation of virtual libraries suffers from a few limitations. Some of these are temporary.

• It’s impossible to link more than one implementation for the same virtual library in one executable.

• It’s not possible for implementations to introduce new public modules. That is, modules that aren’t a part of the
virtual library’s CMI. Consequently, a module in an implementation either implements a virtual module or is
private.

• It isn’t possible to load virtual libraries into utop. As a result, any directory that contains a virtual library will
not work with $ dune utop. This is an essential limitation, but it would be best to somehow skip these libraries
or provide an implementation for them when loading a toplevel.

• Virtual libraries must be defined using Dune. It’s not possible for Dune to implement virtual libraries created
outside of Dune. On the other hand, virtual libraries and implementations defined using Dune should be usable
with findlib-based build systems.

• It’s impossible for a library to be both virtual and implement another library. This isn’t very useful, but it could
technically be used to create partial implementations. It is possible to lift this restriction if there’s enough demand.

2.12 Writing and Running Tests

Dune tries to streamline the testing story as much as possible, so you can focus on the tests themselves and not bother
with setting up various test frameworks.

In this section, we’ll explain the workflow to deal with tests in Dune. In particular, we’ll see how to run the test suite
of a project, how to describe your tests to Dune, and how to promote test results as expectation.

We distinguish three kinds of tests:

• Inline tests - written directly inside the .ml files of a library

• Custom tests - run an executable, possibly followed by an action such as diffing the produced output.

2.12. Writing and Running Tests 47

Dune Documentation

• Cram tests - expect tests written in Cram style.

2.12.1 Running Tests

Whatever the tests of a project are, the usual way to run tests with Dune is to call dune runtest from the shell (or the
command alias dune test). This will run all the tests defined in the current directory and any subdirectory recursively.

Note that in any case, dune runtest is simply shorthand for building the runtest alias, so you can always ask Dune
to run the tests in conjunction with other targets by passing @runtest to dune build. For instance:

$ dune build @install @runtest
$ dune build @install @test/runtest

Running a Single Test

If you would only like to run a single test for your project, you may use dune exec to run the test executable (for the
sake of this example, project/tests/myTest.ml):

$ dune exec project/tests/myTest.exe

To run Cram Tests, you can use the alias that is created for the test. The name of the alias corresponds to the name of the
test without the .t extension. For directory tests, this is the name of the directory without the .t extension. Assuming
a cram-test.t or cram-test.t/run.t file exists, it can be run with:

$ dune build @cram-test

Running Tests in a Directory

You can also pass a directory argument to run the tests from a subtree. For instance, dune runtest test will only
run the tests from the test directory and any subdirectory of test recursively.

2.12.2 Inline Tests

There are several inline tests frameworks available for OCaml, such as ppx_inline_test and qtest. We will use
ppx_inline_test as an example because it has the necessary setup to be used with Dune out of the box.

ppx_inline_test allows one to write tests directly inside .ml files as follows:

let rec fact n = if n = 1 then 1 else n * fact (n - 1)

let%test _ = fact 5 = 120

The file must be preprocessed with the ppx_inline_test PPX rewriter, so for instance the dune file might look like
this:

(library
(name foo)
(preprocess (pps ppx_inline_test)))

In order to tell Dune that our library contains inline tests, we have to add an inline_tests field:

48 Chapter 2. How-to Guides

https://bitheap.org/cram/
https://github.com/janestreet/ppx_inline_test
https://github.com/vincent-hugot/qtest
https://github.com/janestreet/ppx_inline_test
https://github.com/janestreet/ppx_inline_test

Dune Documentation

(library
(name foo)
(inline_tests)
(preprocess (pps ppx_inline_test)))

We can now build and execute this test by running dune runtest. For instance, if we make the test fail by replacing
120 by 0 we get:

$ dune runtest
[...]
File "src/fact.ml", line 3, characters 0-25: <<(fact 5) = 0>> is false.

FAILED 1 / 1 tests

Note that in this case Dune knew how to build and run the tests without any special configuration. This is because
ppx_inline_test defines an inline tests backend that’s used by the library. Some other frameworks, such as qtest,
don’t have any special library or PPX rewriter. To use such a framework, you must tell Dune about it, as it cannot guess.
You can do that by adding a backend field:

(library
(name foo)
(inline_tests (backend qtest.lib)))

In the example above, the name qtest.lib comes from the public_name field in qtest’s own dune file.

Note that using ppx_inline_test requires that the opam package ppx_inline_test be installed in your switch. If
you use ppx_inline_test in a package then that package must unconditionally depend on ppx_inline_test (ie.
ppx_inline_test can’t be a with-test dependency).

Inline Expectation Tests

Inline expectation tests are a special case of inline tests where written OCaml code prints something followed by what
you expect this code to print. For instance, using ppx_expect:

let%expect_test _ =
print_endline "Hello, world!";
[%expect{|
Hello, world!

|}]

The test procedure consist of executing the OCaml code and replacing the contents of the [%expect] extension point
by the real output. You then get a new file that you can compare to the original source file. Expectation tests are a neat
way to write tests as the following test elements are clearly identified:

• The code of the test

• The test expectation

• The test outcome

You can have a look at this blog post to find out more about expectation tests. To Dune, the workflow for expectation
tests is always as follows:

• Write the test with some empty expect nodes in it

• Run the tests

2.12. Writing and Running Tests 49

https://github.com/vincent-hugot/qtest
https://github.com/janestreet/ppx_expect
https://blog.janestreet.com/testing-with-expectations/

Dune Documentation

• Check the suggested correction and promote it as the original source file if you are happy with it

Dune makes this workflow very easy. Simply add ppx_expect to your list of PPX rewriters as follows:

(library
(name foo)
(inline_tests)
(preprocess (pps ppx_expect)))

Then calling dune runtest will run these tests, and in case of mismatch, Dune will print a diff of the original source
file and the suggested correction. For instance:

$ dune runtest
[...]
-src/fact.ml
+src/fact.ml.corrected
File "src/fact.ml", line 5, characters 0-1:
let rec fact n = if n = 1 then 1 else n * fact (n - 1)

let%expect_test _ =
print_int (fact 5);

- [%expect]
+ [%expect{| 120 |}]

In order to accept the correction, simply run:

$ dune promote

You can also make Dune automatically accept the correction after running the tests by typing:

$ dune runtest --auto-promote

Finally, some editor integration can make the editor do the promotion, which in turn makes the workflow even smoother.

Running a Subset of the Test Suite

You may also run a group of tests located under a directory with:

$ dune runtest mylib/tests

The above command will run all tests defined in tests and its subdirectories.

Running Tests in Bytecode or JavaScript

By default, Dune runs inline tests in native mode, unless native compilation isn’t available. In which case, it runs them
in bytecode. You can change this setting to choose the modes that tests should run in. To do this, add a modes field to
the inline_tests field. Available modes are:

• byte for running tests in byte code

• native for running tests in native mode

• best for running tests in native mode with fallback to byte code, if native compilation is not available

• js for running tests in JavaScript using Node.js

For instance:

50 Chapter 2. How-to Guides

Dune Documentation

(library
(name foo)
(inline_tests (modes byte best js))
(preprocess (pps ppx_expect)))

Specifying Inline Test Dependencies

If your tests are reading files, you must tell Dune by adding a deps field the inline_tests field. The argument of
this deps field follows the usual Dependency Specification. For instance:

(library
(name foo)
(inline_tests (deps data.txt))
(preprocess (pps ppx_expect)))

Passing Special Arguments to the Test Runner

Under the hood, a test executable is built by Dune. Depending on the backend used, this runner might take useful
command line arguments. You can specify such flags by using a flags field, such as:

(library
(name foo)
(inline_tests (flags (-foo bar)))
(preprocess (pps ppx_expect)))

The argument of the flags field follows the Ordered Set Language.

Passing Special Arguments to the Test Executable

To control how the test executable is built, it’s possible to customize a subset of compilation options for an executable
using the executable field. Dune gives you this ability by simply specifying command line arguments as flags. You
can specify such flags by using flags field. For instance:

(library
(name foo)
(inline_tests
(flags (-foo bar)
(executable
(flags (-foo bar))))
(preprocess (pps ppx_expect))))

The argument of the flags field follows the Ordered Set Language.

2.12. Writing and Running Tests 51

Dune Documentation

Using Additional Libraries in the Test Runner

When tests are not part of the library code, it’s possible that tests require additional libraries than the library being
tested. This is the case with qtest, as tests are written in comments. You can specify such libraries using a libraries
field, such as:

(library
(name foo)
(inline_tests
(backend qtest)
(libraries bar)))

Changing the Flags of the Linking Step of the Test Runner

You can use the link_flags field to change the linker flags passed to ocamlopt when building the test runner. By
default, the linking flags are -linkall. You probably want to keep -linkall as one of the new list of flags (unless
you know what you are doing), forcing the linker to load your test module, since the test runner doesn’t depend on
anything itself. This field supports (:include ...) forms.

(library
(name foo)
(inline_tests
(executable
(link_flags -linkall -noautolink -cclib -Wl,-Bstatic -cclib -lm)))

(preprocess (pps ppx_expect)))

Defining Your Own Inline Test Backend

If you are writing a test framework (or for other specific cases), you might want to define your own inline tests backend.
If your framework is naturally implemented by a library or PPX rewriter that’s necessary to write tests, you should
define this library as a backend. Otherwise simply create an empty library with your chosen backend’s name.

In order to define a library as an inline tests backend, simply add an inline_tests.backend field to the library
stanza. An inline tests backend is specified by four parameters:

1. How to create the test runner

2. How to build the test runner

3. How to run the test runner

4. Optionally how to run the test runner to list partitions

These four parameters can be specified inside the inline_tests.backend field, which accepts the following fields:

(generate_runner <action>)
(runner_libraries (<ocaml-libraries>))
(flags <flags>)
(list_partitions_flags <flags>)
(extends (<backends>))

For instance:

<action> follows the Actions specification. It describes an action that should be executed in the library’s directory
using this backend for their tests. It’s expected that the action will produce some OCaml code on its standard output.
This code will constitute the test runner. The action can use the following additional variables:

52 Chapter 2. How-to Guides

https://github.com/vincent-hugot/qtest

Dune Documentation

• %{library-name} — the name of the library being tested

• %{impl-files} — the list of implementation files in the library, i.e., all the .ml and .re files

• %{intf-files} — the list of interface files in the library, i.e., all the .mli and .rei files

The runner_libraries field specifies what OCaml libraries the test runner uses. For instance, if the
generate_runner actions generates something like My_test_framework.runtests (), then you should proba-
bly put my_test_framework in the runner_libraries field.

If your test runner needs specific flags, you should pass them in the flags field. You can use the %{library-name}
variable in this field.

If your test runner supports test partitions, you should pass the flags necessary for listing partitions in the
list_partitions_flags field. In such scenario, the flags field will also accepts a %{partition} variable.

Finally, a backend can be an extension of another backend. In this case, you must specify this in the extends field.
For instance, ppx_expect is an extension of ppx_inline_test. It’s possible to use a backend with several extensions in
a library; however, there must be exactly one root backend, i.e., exactly one backend that isn’t an extension of another
one.

When using a backend with extensions, the various fields are simply concatenated. The order in which they are con-
catenated is unspecified; however, if a backend b extends a backend a, then a will always come before b.

Example of Backend

In this example, we put tests in comments of the form:

(*TEST: assert (fact 5 = 120) *)

The backend for such a framework looks like this:

(library
(name simple_tests)
(inline_tests.backend
(generate_runner (run sed "s/(*TEST:\\(.*\\)*)/let () = \\1;;/" %{impl-files}))))

Now all you have to do is write (inline_tests ((backend simple_tests))) wherever you want to write such
tests. Note that this is only an example. We don’t recommend using sed in your build, as this would cause portability
problems.

2.12.3 Custom Tests

We said in Running tests that to run tests, Dune simply builds the runtest alias. As a result, you simply need to add
an action to this alias in any directory in order to define custom tests. For instance, if you have a binary tests.exe
that you want to run as part of running your test suite, simply add this to a dune file:

(rule
(alias runtest)
(action (run ./tests.exe)))

Hence to define a test, a pair of alias and executable stanzas are required. To simplify this common pattern, Dune
provides a tests stanza to define multiple tests and their aliases at once:

(tests (names test1 test2))

2.12. Writing and Running Tests 53

https://github.com/janestreet/ppx_expect
https://github.com/janestreet/ppx_inline_test

Dune Documentation

Diffing the Result

It’s often the case that we want to compare the actual output of a test to an expected one. For that, Dune offers the diff
command, which in essence is the same as running the diff tool, except that it’s more integrated in Dune, especially
with the promote command. For instance, let’s consider this test:

(rule
(with-stdout-to tests.output (run ./tests.exe)))

(rule
(alias runtest)
(action (diff tests.expected tests.output)))

After having run tests.exe and dumping its output to tests.output, Dune will compare the latter to tests.
expected. In case of mismatch, Dune will print a diff and then the dune promote command can be used to copy over
the generated test.output file to tests.expected in the source tree.

Alternatively, the tests also supports this style of tests.

(tests (names tests))

Dune expects the existence of a tests.expected file to infer that this is an expected test.

This provides a nice way of dealing with the usual write code, run, and promote cycle of testing. For instance:

$ dune runtest
[...]
-tests.expected
+tests.output
File "tests.expected", line 1, characters 0-1:
-Hello, world!
+Good bye!
$ dune promote
Promoting _build/default/tests.output to tests.expected.

Note that if available, the diffing is done using the patdiff tool, which displays nicer looking diffs than the standard
diff tool. You can change that by passing --diff-command CMD to Dune.

2.12.4 Cram Tests

Cram tests are expectation tests written in a shell-like syntax. They are ideal for testing binaries. Cram tests are
automatically discovered from files or directories with a .t extension. By default, this has been enabled since Dune
3.0. For older versions, it must be manually enabled in the dune-project file:

(lang dune 2.7)
(cram enable)

54 Chapter 2. How-to Guides

https://github.com/janestreet/patdiff

Dune Documentation

File Tests

To define a standalone test, we create a .t file. For example, foo.t:

Simplest possible Cram test
$ echo "testing"

This simple example demonstrates two components of Cram tests: comments and commands. See Cram Tests for a
description of the syntax.

To run the test and promote the results:

$ dune runtest
$ dune promote

We now see the output of the command:

Simplest possible cram test
$ echo "testing"
testing

This is the main advantage of expect tests. We don’t need to write assertions manually; instead we detect failure when
the command produces a different output than what is recorded in the test script.

For example, here’s an example of how we’d test the wc utility. wc.t:

We create a test artifact called "foo"
$ cat >foo <<EOF
> foo
> bar
> baz
> EOF

After creating the fixture, we want to verify that ``wc`` gives us the right
result:
$ wc -l foo | awk '{ print $1 }'
4

The above example uses the doc syntax, piping the subsequent lines to cat. This is convenient for creating small test
artifacts.

Directory Tests

In the above example we used cat to create the test artifact, but what if there are too many artifacts to comfortably fit
in test file? Or some of the artifacts are binary?

It’s possible to include the artifacts as normal files or directories, provided the test is defined as a directory. The name
of the test directory must end with .t and must include a run.t as the test script. Everything else in that directory is
treated as raw data for the test. It’s not possible to define rules using dune files in such a directory.

We convert the wc test above into a directory test wc.t:

$ ls wc.t
run.t foo.txt bar/

2.12. Writing and Running Tests 55

Dune Documentation

This defines a directory test wc.t which must include a run.t file as the test script, with fool.txt and bar are test
artifacts. We may then access their contents in the test script run.t:

Testing wc:
$ wc -l foo | awk '{ print $1 }'
4
$ wc -l $(ls bar) | awk '{ print $1 }'
1231

See also:

(cram) stanza reference

Testing an OCaml Program

The most common testing situation involves testing an executable that is defined in Dune. For example:

(executable
(name wc)
(public_name wc))

To use this binary in the Cram test, we should depend on the binary in the test:

(cram
(deps %{bin:wc}))

Sandboxing

Since Cram tests often create intermediate artifacts, it’s important that Cram tests are executed in a clean environment.
This is why all Cram tests are sandboxed. To respect sandboxing, every test should specify dependency on any artifact
that might rely on using the deps field.

See Sandboxing for details about the sandboxing mechanism.

Test Output Sanitation

In some situations, Cram tests emit non portable or non-deterministic output. We recommend sanitising such outputs
using pipes. For example, we can scrub the OCaml magic number using sed as follows:

$ ocamlc -config | grep "cmi_magic_number:" | sed 's/Caml.*/$SPECIAL_CODE/'
cmi_magic_number: $SPECIAL_CODE

By default, Dune will scrub some paths from the output of the tests. The default list of paths is:

• The PWD of the test will be replaced by $TESTCASE_ROOT

• The temporary directory for the current script will be replaced by $TMPDIR

To add additional paths to this sanitation mechanism, it’s sufficient to modify the standard
BUILD_PATH_PREFIX_MAP environment variable. For example:

$ export BUILD_PATH_PREFIX_MAP="HOME=$HOME:$BUILD_PATH_PREFIX_MAP"
$ echo $HOME
$HOME

56 Chapter 2. How-to Guides

https://reproducible-builds.org/specs/build-path-prefix-map/

Dune Documentation

Note: Unlike Dune’s version of Cram, the original specification for Cram supports regular expression and glob filtering
for matching output. We chose not to implement this feature because it breaks the test, diff, and accept cycle. With regex
or glob matching, the output must now be manually inspected and possibly updated. We consider the postprocessing
approach described here as superior and will not introduce output matchers.

2.13 How to Bundle Resources

This guide will show you how to configure Dune to generate modules with string resources from other files in your
project.

2.13.1 Folder Structure

$ tree src
src

lib
my_lib

dune
resources

site.css

2.13.2 Dune Configuration

See progn and with-<outputs>-to.

(rule
(with-stdout-to
css.ml
(progn
(echo "let css = {|")
(cat resources/site.css)
(echo "|}"))))

2.13.3 Using the Bundled Resource

let () = Printf.printf "%s" Css.css

2.14 How to Load a Project in a Toplevel

It is possible to use OCaml code in an interactive way, by typing an expression, which gets evaluated and its result
printed. Such a program is called a toplevel, or REPL (Read-Eval-Print Loop).

The compiler distribution comes with a small REPL called simply ocaml, and the community has developed enhanced
versions such as UTop.

2.13. How to Bundle Resources 57

https://github.com/ocaml-community/utop

Dune Documentation

2.14.1 Building a Specialized UTop Executable

It is possible to generate a specialized version of UTop that embeds the current project. To do so, use the following
command:

$ dune utop

The interactive session will start with all the modules loaded.

If some of the libraries are PPX rewriters, the phrases you type in the toplevel will be rewritten with these PPX rewriters.
Similarly, PPX derivers defined in the project will be available.

2.14.2 Loading the Project in a Toplevel

It is also possible to load Dune projects in any toplevel. To do that, simply execute the following in your toplevel:

#use_output "dune ocaml top";;

dune ocaml top is a Dune command that builds all the libraries in the current directory and subdirectories and outputs
the relevant toplevel directives (#directory and #load) to make the various modules available in the toplevel.

2.14.3 Loading a Single Module in a Toplevel

It’s also possible to load individual modules for interactive development. Use the following dune command:

#use_output "dune ocaml top-module foo.ml";;

This will print directives that will load foo.ml without sealing it behind foo.mli. This is particularly useful for
peeking and prodding at a module’s internals.

2.15 Using Rule Generation

Sometimes it can be useful to generate Dune rules that depend on the file system layout or on the content of configuration
files. This often happens for integration tests.

In this document, we will see two ways to encode this behavior.

We suppose that we are testing an executable named tool. There are some input files named *.input, output files
named *.output, and we want to ensure that when running tool on x.input, the standard output corresponds to
x.output.

2.15.1 The Generate-Include-Commit Pattern

Note: This is the most common way to do this. It has a couple drawbacks listed below, but you should start with this
pattern.

What we are going to do is:

• generate a dune.inc file;

• include it in our main dune file;

58 Chapter 2. How-to Guides

Dune Documentation

• commit the generated code in the source repository.

This creates a loop: a program (the “generator”) looks at the file system and creates a dune.inc file. Changes to the
file system (for example, if a test is added) mean that a change in dune.inc will be promoted. These generated rules
are included in the main dune file, so dune runtest will run the tests. Finally, the generated file is part of the source
repository, so it is not necessary to run several commands to run the test suite.

Let’s expand a bit on how to achieve this.

Generating a dune.inc File

Create a gen subdirectory and create a gen.ml file in it:

gen/gen.ml

let generate_rules base =
Printf.printf
{|

(rule
(with-stdout-to %s.gen
(run %%{bin:tool} %s.input)))

(rule
(alias runtest)
(action
(diff %s.output %s.gen)))
|}

base base base base

let () =
Sys.readdir "."
|> Array.to_list
|> List.sort String.compare
|> List.filter_map (Filename.chop_suffix_opt ~suffix:".input")
|> List.iter generate_rules

Create a dune file in that directory:

gen/dune

(executable
(name gen))

This defines an executable that lists *.input files in the current directory and outputs rules on its standard output.

Note: It is important to sort the input files to ensure that the output is independent from the order in which Sys.
readdir returns the files .

For each input file, we output two rules:

• The first one creates a x.gen file that corresponds to the actual output.

• The second uses a diff action to compare the actual output to the expected output. If it is different, dune runtest
will display the difference, which can be accepted by dune promote.

2.15. Using Rule Generation 59

Dune Documentation

Note: It is possible to have more complicated logic here. For example, to pass different arguments to tool depending
on the presence of a *.args file. To do that, check if *.args exists in generate_rules and emit a different (run
...) action.

Including it in the Main dune File

Our main test dune file contains the following:

dune

(include dune.inc)

(rule
(deps (source_tree .))
(with-stdout-to
dune.inc.gen
(run gen/gen.exe)))

(rule
(alias runtest)
(action
(diff dune.inc dune.inc.gen)))

In addition to including the contents of dune.inc, we use the same pattern as before: dune.inc.gen is the actual
output of the generator, and dune.inc is the expected output. At runtime, the generator will read the contents of
the current directory (where the *.input and *.output files are located), so we record (source_tree .) as a
dependency to make it run again if a file is created, for example.

Commit the Generated Code In The Source Repository

To make this work, we have a final step to do. We have to add the generated file to our source tree. But since it is
generated, we will have to first create an empty file, run the test, and promote the result.

$ touch dune.inc
$ dune runtest
+ (rule
+ (with-stdout-to a.gen
+ (run %{bin:tool} a.input)))
+
+ (rule
+ (alias runtest)
+ (action
+ (diff a.output a.gen)))
$ dune promote dune.inc
$ git add dune.inc

Now, running dune runtest will run the test suite.

60 Chapter 2. How-to Guides

Dune Documentation

Notes

This pattern is “correct”: it will execute all tests and make sure the list of tests is up to date. But when adding a test,
it is necessary to first run dune runtest, promote the result, and then re-run dune runtest to actually run the test
(and possibly promote the result of the test itself).

There is a variant of this pattern which will promote the output automatically instead of using a manual promotion step.
This variant can be used either for the test list or for the individual tests.

To use it in the test list, replace the dune file by this version:

dune (alternative version)

(include dune.inc)

(rule
(mode promote)
(alias runtest)
(deps (source_tree .))
(with-stdout-to
dune.inc
(run gen/gen.exe)))

Using this version, dune runtest will directly replace dune.inc with an updated version.

Another caveat of this approach is that the generator needs to emit the same output on all systems. For example, if some
tests should be skipped on Linux, the generator can not just filter the corresponding tests depending on Sys.os_type.
It has to consistently emit a (enabled_if) field for the rules.

2.15.2 Using (dynamic_include)

New in version 3.14.

This technique relies on dynamic_include, which is more flexible than include. The difference is that the intermediate
dune.inc file does not need to be part of the source tree. It will only be generated by a rule and be present in the
_build directory.

At first it looks like it would be possible to reuse the same pattern as above: change include to dynamic_include
and delete the dune.inc file. However, it is not possible. The reason is that rules are loaded per directory, and there
needs to be a strict order (no cycles) between directories for this to work.

So, instead we are going to:

• generate dune.inc in a subdirectory named generate, and

• include these rules in a subdirectory named run.

These subdirectories do not need to be actual directories. They can be emulated through subdir.

To do this, we can create the following dune file in the same directory as the *.input and *.output files.

dune

(executable
(name gen))

(subdir run
(dynamic_include ../generate/dune.inc))

(continues on next page)

2.15. Using Rule Generation 61

Dune Documentation

(continued from previous page)

(subdir generate
(rule
(deps (glob_files ../*.input))
(action
(with-stdout-to dune.inc
(run ../gen.exe)))))

Then create the following gen.ml file. Note that here we can define it in the same directory.

gen.ml

let generate_rules base =
Printf.printf
{|

(rule
(with-stdout-to %s.gen
(run %%{bin:tool} ../%s.input)))

(rule
(alias runtest)
(action
(diff ../%s.output %s.gen)))
|}

base base base base

let () =
Sys.readdir ".." |> Array.to_list |> List.sort String.compare
|> List.filter_map (Filename.chop_suffix_opt ~suffix:".input")
|> List.iter generate_rules

There are a few differences from the generator above because this one is going to be invoked from subdirectories, so
it is necessary to refer to the .. directory both in the input (which files to read) and in the output (how the rules are
executed).

These two files are enough. dune runtest is going to generate the rules and interpret them in a single command.

Notes

This approach is shorter, but it might be more difficult to debug because changes to the generated rules will not be
visible. Also, it works in that case, but it is not possible to generate all kinds of stanzas with that pattern. See dy-
namic_include for more information about the limitations.

62 Chapter 2. How-to Guides

CHAPTER

THREE

REFERENCE MANUAL

These documents specify the various features and languages present in Dune.

3.1 dune

dune files are the main part of Dune. They are used to describe libraries, executables, tests, and everything Dune needs
to know about.

The syntax of dune files is described in Lexical Conventions.

dune files are composed of stanzas, as shown below:

(library
(name mylib)
(libraries base lwt))

(rule
(target foo.ml)
(deps generator/gen.exe)
(action (run %{deps} -o %{target})))

The following pages describe the available stanzas and their meanings.

3.1.1 executable

The executable stanza must be used to describe an executable. The format of executable stanzas is as follows:

(executable
(name <name>)
<optional-fields>)

<name> is a module name that contains the executable’s main entry point. There can be additional modules in the
current directory; you only need to specify the entry point. Given an executable stanza with (name <name>), Dune
will know how to build <name>.exe. If requested, it will also know how to build <name>.bc and <name>.bc.js
(Dune 2.0 and up also need specific configuration (see the modes optional field below)).

<name>.exe is a native code executable, <name>.bc is a bytecode executable which requires ocamlrun to run, and
<name>.bc.js is a JavaScript generated using js_of_ocaml.

Please note: in case native compilation is not available, <name>.exewill be a custom bytecode executable, in the sense
of ocamlc -custom. This means it’s a native executable that embeds the ocamlrun virtual machine as well as the
bytecode, so you can always rely on <name>.exe being available. Moreover, it is usually preferable to use <name>.exe

63

Dune Documentation

in custom rules or when calling the executable by hand because running a bytecode executable often requires loading
shared libraries that are locally built. This requires additional setup, such as setting specific environment variables,
which Dune doesn’t do at the moment.

Native compilation isn’t available when there is no ocamlopt binary at the same place as ocamlc was found.

Executables can also be linked as object or shared object files. See linking modes for more information.

Starting from Dune 3.0, it’s possible to automatically generate empty interface files for executables. See executa-
bles_implicit_empty_intf .

<optional-fields> are:

• (public_name <public-name>) specifies that the executable should be installed under this name. It’s the
same as adding the following stanza to your dune file:

(install
(section bin)
(files (<name>.exe as <public-name>)))

As a special case, (public_name -) is the same as if the field was absent.

• (package <package>) if there is a (public_name ...) field, this specifies the package the executables are
part of it.

• (libraries <library-dependencies>) specifies the library dependencies. See Library Dependencies for
more details.

• (link_flags <flags>) specifies additional flags to pass to the linker. This field supports (:include ...)
forms.

• (link_deps (<deps-conf list>)) specifies the dependencies used only by the linker, i.e., when using a
version script. See Dependency Specification for more details.

• (modules <modules>) specifies which modules in the current directory Dune should consider when building
this executable. Modules not listed here will be ignored and cannot be used inside the executable described by
the current stanza. It is interpreted in the same way as the (modules ...) field of library.

• (root_module <module>) specifies a root_module that collects all listed dependencies in libraries. See
the documentation for root_module in the library stanza.

• (modes (<modes>)) sets the linking modes. The default is (exe). Before Dune 2.0, it formerly was (byte
exe).

• (preprocess <preprocess-spec>) is the same as the (preprocess ...) field of library.

(preprocessor_deps ...) field of library.

• (preprocessor_deps (<deps-conf list>)) is the same as the

• js_of_ocaml: See the section about js_of_ocaml

• flags, ocamlc_flags, and ocamlopt_flags: See OCaml Flags.

• (modules_without_implementation <modules>) is the same as the corresponding field of library.

• (allow_overlapping_dependencies) is the same as the corresponding field of library.

• (optional) is the same as the corresponding field of library.

• (enabled_if <blang expression>) is the same as the corresponding field of library.

• (promote <options>) allows promoting the linked executables to the source tree. The options are the same
as for the rule promote mode. Adding (promote (until-clean)) to an executable stanza will cause Dune
to copy the .exe files to the source tree and use dune clean to delete them.

64 Chapter 3. Reference Manual

Dune Documentation

• (foreign_stubs <foreign-stubs-spec>) specifies foreign source files, e.g., C or C++ stubs, to be linked
into the executable. See Foreign Sources, Archives, and Objects for more details.

• (foreign_archives <foreign-archives-list>) specifies archives of foreign object files to be linked into
the executable. See the section Foreign Archives for more details.

• (forbidden_libraries <libraries>) ensures that the given libraries are not linked in the resulting exe-
cutable. If they end up being pulled in, either through a direct or transitive dependency, Dune fails with an error
message explaining how the library was pulled in. This field has been available since Dune 2.0.

• (embed_in_plugin_libraries <library-list>) specifies a list of libraries to link statically when using
the plugin linking mode. By default, no libraries are linked in. Note that you may need to also use the -linkall
flag if some of the libraries listed here are not referenced from any of the plugin modules.

• (ctypes <ctypes field>) instructs Dune to use ctypes stubgen to process your type and function descriptions
for binding system libraries, vendored libraries, or other foreign code. See Stub Generation with Dune Ctypes
for a full reference. This field is available since the 3.0 version of the Dune language.

• (empty_module_interface_if_absent) causes the generation of empty interfaces for every module that
does not have an interface file already. Useful when modules are used solely for their side-effects. This field is
available since the 3.0 version of the Dune language.

Linking Modes

The modes field allows selecting which linking modes will be used to link executables. Each mode is a pair
(<compilation-mode> <binary-kind>), where <compilation-mode> describes whether the bytecode or native
code backend of the OCaml compiler should be used and <binary-kind> describes what kind of file should be pro-
duced.

<compilation-mode> must be byte, native, or best, where best is native with a fallback to bytecode when
native compilation isn’t available.

<binary-kind> is one of:

• c for producing OCaml bytecode embedded in a C file

• exe for normal executables

• object for producing static object files that can be manually linked into C applications

• shared_object for producing object files that can be dynamically loaded into an application. This mode can
be used to write a plugin in OCaml for a non-OCaml application.

• js for producing JavaScript from bytecode executables, see explicit_js_mode.

• plugin for producing a plugin (.cmxs if native or .cma if bytecode).

For instance the following executables stanza will produce bytecode executables and native shared objects:

(executables
(names a b c)
(modes (byte exe) (native shared_object)))

Additionally, you can use the following shorthands:

• c for (byte c)

• exe for (best exe)

• object for (best object)

• shared_object for (best shared_object)

3.1. dune 65

Dune Documentation

• byte for (byte exe)

• native for (native exe)

• js for (byte js)

• plugin for (best plugin)

For instance, the following modes fields are all equivalent:

(modes (exe object shared_object))
(modes ((best exe)

(best object)
(best shared_object)))

Lastly, use the special mode byte_complete for building a bytecode executable as a native self-contained executable,
i.e., an executable that doesn’t require the ocamlrun program to run and doesn’t require the C stubs to be installed as
shared object files.

The extensions for the various linking modes are chosen as follows:

%{ext_obj} and %{ext_dll} are the extensions for object and shared object files. Their value depends on the OS.
For instance, on Unix %{ext_obj} is usually .o and %{ext_dll} is usually .so, while on Windows %{ext_obj} is
.obj and %{ext_dll} is .dll.

Up to version 3.0 of the Dune language, when byte is specified but none of native, exe, or byte_complete are
specified, Dune implicitly adds a linking mode that’s the same as byte_complete, but it uses the extension .exe.
.bc files require additional files at runtime that aren’t currently tracked by Dune, so they don’t run .bc files during the
build. Run the .bc.exe or .exe ones instead, as these are self-contained.

Lastly, note that .bc executables cannot contain C stubs. If your executable contains C stubs you may want to use
(modes exe).

js_of_ocaml

In library and executables stanzas, you can specify js_of_ocaml options using (js_of_ocaml
(<js_of_ocaml-options>)).

<js_of_ocaml-options> are all optional:

• (flags <flags>) to specify flags passed to js_of_ocaml compile. This field supports (:include ...)
forms

• (build_runtime_flags <flags>) to specify flags passed to js_of_ocaml build-runtime. This field
supports (:include ...) forms

• (link_flags <flags>) to specify flags passed to js_of_ocaml link. This field supports (:include ...)
forms

• (javascript_files (<files-list>)) to specify js_of_ocaml JavaScript runtime files.

<flags> is specified in the Ordered Set Language.

The default value for (flags ...) depends on the selected build profile. The build profile dev (the default) will
enable sourcemap and the pretty JavaScript output.

See JavaScript Compilation With Js_of_ocaml for more information.

66 Chapter 3. Reference Manual

Dune Documentation

3.1.2 executables

There is a very subtle difference in the naming of these stanzas. One is executables, plural, and the other is
executable, singular. The executables stanza is very similar as the executable stanza but can be used to to
describe several executables sharing the same configuration, so the plural executables stanza is used to describe
more than one executable.

It shares the same fields as the executable stanza, except that instead of (name ...) and (public_name ...) you
must use the plural versions as well:

• (names <names>) where <names> is a list of entry point names. Compare with executable, where you only
need to specify the modules containing the entry point of each executable.

• (public_names <names>) describes under what name to install each executable. The list of names must be of
the same length as the list in the (names ...) field. Moreover, you can use - for executables that shouldn’t be
installed.

However, using executables the executables defined in the stanza are allowed to share modules.

Given modules Foo, Bar and Baz the usage of executables can simplify the code:

(executables
(names foo bar))

Instead of the more complex

(library
(name baz)
(modules baz))

(executable
(name foo)
(modules foo)
(libraries baz))

(executable
(name bar)
(modules bar)
(libraries baz))

3.1.3 library

The library stanza must be used to describe OCaml libraries. The format of library stanzas is as follows:

(library
(name <library-name>)
<optional-fields>)

<library-name> is the real name of the library. It determines the names of the archive files generated for the library
as well as the module name under which the library will be available, unless (wrapped false) is used (see below).
It must be a valid OCaml module name, but it doesn’t need to start with an uppercase letter.

For instance, the modules of a library named foo will be available as Foo.XXX, outside of foo itself; however, it is
allowed to write an explicit Foo module, which will be the library interface. You are free to expose only the modules
you want.

3.1. dune 67

Dune Documentation

Please note: by default, libraries and other things that consume OCaml/Reason modules only consume modules from
the directory where the stanza appear. In order to declare a multi-directory library, you need to use the include_subdirs
stanza.

<optional-fields> are:

• (public_name <name>) - the name under which the library can be referred as a dependency when it’s not part
of the current workspace, i.e., when it’s installed. Without a (public_name ...) field, the library won’t be
installed by Dune. The public name must start with the package name it’s part of and optionally followed by a
dot, then anything else you want. The package name must also be one of the packages that Dune knows about,
as determined by the logic described in Packages.

• (package <package>) installs a private library under the specified package. Such a library is now usable by
public libraries defined in the same project. The Findlib name for this library will be <package>.__private__.
<name>; however, the library’s interface will be hidden from consumers outside the project.

• (synopsis <string>) should give a one-line description of the library. This is used by tools that list installed
libraries

• (modules <modules>) specifies what modules are part of the library. By default, Dune will use all the .ml/
.re files in the same directory as the dune file. This includes ones present in the file system as well as ones
generated by user rules. You can restrict this list by using a (modules <modules>) field. <modules> uses
the Ordered Set Language, where elements are module names and don’t need to start with an uppercase letter.
For instance, to exclude module Foo, use (modules (:standard \ foo)). Starting in Dune 3.13, one can
also use special forms (:include <file>) and variables such as %{read-lines:<file>} in this field to
customize the list of modules using Dune rules. The dependencies introduced in this way must live in a different
directory that the stanza making use of them.

• (libraries <library-dependencies>) specifies the library’s dependencies. See Library Dependencies for
more details.

• (wrapped <boolean>) specifies whether the library modules should be available only through the top-level
library module, or if they should all be exposed at the top level. The default is true, and it’s highly recommended
to keep it this way. Because OCaml top-level modules must all be unique when linking an executables, polluting
the top-level namespace will make your library unusable with other libraries if there is a module name clash.
This option is only intended for libraries that manually prefix all their modules by the library name and to ease
porting of existing projects to Dune.

• (wrapped (transition <message>)) is the same as (wrapped true), except it will also generate un-
wrapped (not prefixed by the library name) modules to preserve compatibility. This is useful for libraries that
would like to transition from (wrapped false) to (wrapped true) without breaking compatibility for users.
The deprecation notices for the unwrapped modules will include <message>.

• (preprocess <preprocess-spec>) specifies how to preprocess files when needed. The default is
no_preprocessing, and other options are described in Preprocessing Specification.

• (preprocessor_deps (<deps-conf list>)) specifies extra preprocessor dependencies preprocessor, i.e.,
if the preprocessor reads a generated file. The specification of dependencies is described in Dependency Speci-
fication.

• (optional) - if present, it indicates that the library should only be built and installed if all the dependencies
are available, either in the workspace or in the installed world. Use this to provide extra features without adding
hard dependencies to your project

• (foreign_stubs <foreign-stubs-spec>) specifies foreign source files, e.g., C or C++ stubs, to be com-
piled and packaged together with the library. See the section Foreign Sources, Archives, and Objects for more
details. This field replaces the now-deleted fields c_names, c_flags, cxx_names, and cxx_flags.

• (foreign_archives <foreign-archives-list>) specifies archives of foreign object files to be packaged
with the library. See the section Foreign Archives for more details. This field replaces the now-deleted field

68 Chapter 3. Reference Manual

Dune Documentation

self_build_stubs_archive.

• (install_c_headers (<names>)) - if your library has public C header files that must be installed, you must
list them in this field, without the .h extension. You should favor the public_headers field starting from 3.8.

• (public_headers (<files>)) - if your library has public C header files that must be installed, you must
list them in this field. This field accepts globs in the form of (glob_files_rec <glob>) and (glob_files
<glob>) fields to specify multiple files.

The advantage of this field over install_c_headers is that it preserves the directory structures of the headers
relative to the library stanza. Additionally, it allows to specify the extensions of the header files, which allows
alternative extensions such as .hh or .hpp.

• (modes <modes>) is for modes which should be built by default. The most common use for this feature is to
disable native compilation when writing libraries for the OCaml toplevel. The following modes are available:
byte, native and best. best is native or byte when native compilation isn’t available.

• (no_dynlink) disables dynamic linking of the library. This is for advanced use only. By default, you shouldn’t
set this option.

• (kind <kind>) sets the type of library. The default is normal, but other available choices are ppx_rewriter
and ppx_deriver. They must be set when the library is intended to be used as a PPX rewriter or a [@@deriving
...] plugin. The reason ppx_rewriter and ppx_deriver are split is historical, and hopefully we won’t need
two options soon. Both PPX kinds support an optional field: (cookies <cookies>), where <cookies> is a list
of pairs (<name> <value>) with <name> being the cookie name and <value> a string that supports Variables
evaluated by each preprocessor invocation (note: libraries that share cookies with the same name should agree
on their expanded value).

• (ppx_runtime_libraries (<library-names>)) is for when the library is a ppx rewriter or a
[@@deriving ...] plugin, and has runtime dependencies. You need to specify these runtime dependencies
here.

• (virtual_deps (<opam-packages>). Sometimes opam packages enable a specific feature only if another
package is installed. For instance, the case of ctypes will only install ctypes.foreign if the dummy
ctypes-foreign package is installed. You can specify such virtual dependencies here, but you don’t need
to do so unless you use Dune to synthesize the depends and depopts sections of your opam file.

• js_of_ocaml sets options for JavaScript compilation, see js_of_ocaml.

• For flags, ocamlc_flags, and ocamlopt_flags, see OCaml Flags.

• (library_flags (<flags>)) is a list of flags passed to ocamlc and ocamlopt when building the library
archive files. You can use this to specify -linkall, for instance. <flags> is a list of strings supporting Vari-
ables.

• (c_library_flags <flags>) specifies the flags passed to the C compiler when constructing the library
archive file for the C stubs. <flags> uses the Ordered Set Language and supports (:include ...) forms.
When you write bindings for a C library named bar, you should typically write -lbar here, or whatever flags
are necessary to link against this library.

• (modules_without_implementation <modules>) specifies a list of modules that have only a .mli or .rei
but no .ml or .re file. Such modules are usually referred as mli only modules. They are not officially supported
by the OCaml compiler; however, they are commonly used. Such modules must only define types. Since it isn’t
reasonably possible for Dune to check this is the case, Dune requires the user to explicitly list such modules
to avoid surprises. Note that the modules_without_implementation field isn’t merged in modules, which
represents the total set of modules in a library. If a directory has more than one stanza, and thus a modules field
must be specified, <modules> still needs to be added in modules.

• (private_modules <modules>) specifies a list of modules that will be marked as private. Private modules are
inaccessible from outside the libraries they are defined in. Note that the private_modules field is not merged

3.1. dune 69

Dune Documentation

in modules, which represents the total set of modules in a library. If a directory has more than one stanza and
thus a modules field must be specified, <modules> still need to be added in modules.

• (allow_overlapping_dependencies) allows external dependencies to overlap with libraries that are present
in the workspace.

• (enabled_if <blang expression>) conditionally disables a library. A disabled library cannot be built
and will not be installed. The condition is specified using the Boolean Language, and the field allows for the
%{os_type} variable, which is expanded to the type of OS being targeted by the current build. Its value is the
same as the value of the os_type parameter in the output of ocamlc -config.

• (inline_tests) enables inline tests for this library. They can be configured through options using
(inline_tests <options>). See Inline Tests for a reference of corresponding options.

• (root_module <module>) this field instructs Dune to generate a module that will contain module aliases for
every library specified in dependencies. This is useful whenever a library is shadowed by a local module. The
library may then still be accessible via this root module

• (ctypes <ctypes field>) instructs Dune to use ctypes stubgen to process your type and function descriptions
for binding system libraries, vendored libraries, or other foreign code. See Stub Generation with Dune Ctypes
for a full reference. This field is available since the 3.0 version of the Dune language.

• (empty_module_interface_if_absent) causes the generation of empty interfaces for every module that
does not have an interface file already. Useful when modules are used solely for their side-effects. This field is
available since the 3.0 version of the Dune language.

Note that when binding C libraries, Dune doesn’t provide special support for tools such as pkg-config; however,
it integrates easily with Configurator by using (c_flags (:include ...)) and (c_library_flags (:include
...)).

3.1.4 foreign_library

The foreign_library stanza describes archives of separately compiled foreign object files that can be packaged with
an OCaml library or linked into an OCaml executable. See Foreign Sources, Archives, and Objects for further details
and examples.

3.1.5 deprecated_library_name

The deprecated_library_name stanza enables redirecting an old deprecated name after a library has been renamed.
It’s syntax is as follows:

(deprecated_library_name
(old_public_name <name>)
(new_public_name <name>))

When a developer uses the old public name in a list of library dependencies, it will be transparently replaced by the
new name. Note that it’s not necessary for the new name to exist at definition time, as it is only resolved at the point
where the old name is used.

The old_public_name can also be one of the names declared in the deprecated_package_names field of the pack-
age declaration in the dune-project file. In this case, the “old” library is understood to be a library whose name is
not prefixed by the package name. Such a library cannot be defined in Dune, but other build systems allow it. This
feature is meant to help migration from those systems.

70 Chapter 3. Reference Manual

Dune Documentation

3.1.6 generate_sites_module

New in version 2.8.

Dune proposes some facilities for dealing with sites in a program. The generate_sites_module stanza will generate
code for looking up the correct locations of the sites’ directories and for loading plugins. It works after installation
with or without the relocation mode, inside Dune rules, and when using Dune executables. For promotion, it works
only if the generated modules are solely in the executable (or library statically linked) promoted; generated modules in
plugins won’t work.

(generate_sites_module
(module <name>)
<facilities>)

The module’s code is generated in the directory with the given name. The code is populated according to the requested
facilities.

The available <facilities> are:

• sourceroot adds a value val sourceroot: string option in the generated module, which contains the
value of %{workspace_root}, if the code has been built locally. It could be used to keep the tool’s configuration
file locally when executed with dune exec or after promotion. The value is None once it has been installed.

• relocatable adds a value val relocatable: bool in the generated module, which indicates if the binary
has been installed in the relocatable mode.

• (sites <package>) adds a value val <site>: string list for each <site> of <package> in the sub-
module Sites of the generated module. The identifier <site> isn’t capitalized.

• (plugins (<package> <site>) ...) adds a submodule <site> with the following signature S in the sub-
module Plugins of the generated module . The identifier <site> is capitalized.

module type S = sig
val paths: string list
(** return the locations of the directory containing the plugins *)

val list: unit -> string list
(** return the list of available plugins *)

val load_all: unit -> unit
(** load all the plugins and their dependencies *)

val load: string -> unit
(** load the specified plugin and its dependencies *)

end

The generated module is a dependency on the library dune-site, and if the facilities (plugins ...) are used, it is
a dependency on the library dune-site.plugins. Those dependencies are not automatically added to the library or
executable which use the module (cf. Plugins and Dynamic Loading of Packages).

3.1. dune 71

Dune Documentation

3.1.7 test

The test stanza is the singular form of tests. The only difference is that it’s of the form:

(test
(name foo)
<optional fields>)

The name field is singular, and the same optional fields are supported.

3.1.8 tests

The tests stanza allows one to easily define multiple tests. For example, we can define two tests at once with:

(tests
(names mytest expect_test)
<optional fields>)

This defines an executable named mytest.exe that will be executed as part of the runtest alias. If the directory also
contains an expect_test.expected file, then expect_test will be used to define an expect test. That is, the test
will be executed and its output will be compared to expect_test.expected.

The optional fields supported are a subset of the alias and executables fields. In particular, all fields except for
public_names are supported from the executables stanza. Alias fields apart from name are allowed.

The (enabled_if) field has special semantics: when present, it only applies to running the tests. The test executable
is always built by default. If you need to restrict building the test executable, use (build_if) instead.

By default, the test binaries are run without options. The action field can override the test binary invocation, i.e., if
you’re using Alcotest and wish to see all the test failures on the standard output. When running Dune runtest you
can use the following stanza:

(tests
(names mytest)
(libraries alcotest mylib)
(action (run %{test} -e)))

Starting from Dune 2.9, it’s possible to automatically generate empty interface files for test executables. See executa-
bles_implicit_empty_intf .

3.1.9 Cram

(cram ...)

Configure Cram tests in the current directory (and subdirectories).

A single test may be configured by more than one cram stanza. In such cases, the values from all applicable
cram stanzas are merged together to get the final values for all the fields.

See also:

Cram Tests

(deps <dep-spec>)

Specify the dependencies of the test.

When testing binaries, it’s important to to specify a dependency on the binary for two reasons:

72 Chapter 3. Reference Manual

Dune Documentation

• Dune must know to re-run the test when a dependency changes

• The dependencies must be specified to guarantee that they’re visible to the test when running it.

The following introduces a dependency on foo.exe on all Cram tests in this directory:

(cram
(deps ../foo.exe))

See also:

Dependency Specification.

(applies_to <predicate-lang>)

Specify the scope of this cram stanza. By default it applies to all the Cram tests in the current directory.
The special :whole_subtree value will apply the options to all tests in all subdirectories (recursively).
This is useful to apply common options to an entire test suite.

The following will apply the stanza to all tests in this directory, except for foo.t and bar.t:

(cram
(applies_to * \ foo bar)
(deps ../foo.exe))

See also:

Predicate Language

(enabled_if <blang>)

Control whether the tests are enabled.

See also:

Boolean Language, Variables

(alias <name>)

Alias that can be used to run the test. In addition to the user alias, every test foo.t is attached to the
@runtest alias and gets its own @foo alias to make it convenient to run individually.

(locks <lock-names>)

Specify that the tests must be run while holding the following locks.

See also:

Locks

(package <name>)

Attach the tests selected by this stanza to the specified package.

(runtest_alias <true|false>)

New in version 3.12.

When set to false, do not add the tests to the runtest alias. The default is to add every Cram test to
runtest, but this is not always desired.

3.1. dune 73

Dune Documentation

3.1.10 toplevel

The toplevel stanza allows one to define custom toplevels. Custom toplevels automatically load a set of specified
libraries and are runnable like normal executables. Example:

(toplevel
(name tt)
(libraries str))

This will create a toplevel with the str library loaded. We may build and run this toplevel with:

$ dune exec ./tt.exe

(preprocess (pps ...)) is the same as the (preprocess (pps ...)) field of library. Currently, action and
future_syntax are not supported in the toplevel.

3.1.11 documentation

Additional manual pages may be attached to packages using the documentation stanza. These .mld files must contain
text in the same syntax as OCamldoc comments.

(documentation (<optional-fields>))

Where <optional-fields> are:

• (package <name>) defines the package this documentation should be attached to. If this is absent, Dune will
try to infer it based on the location of the stanza.

• (mld_files <arg>): the <arg> field follows the Ordered Set Language. This is a set of extensionless MLD
file basenames attached to the package, where :standard refers to all the .mld files in the stanza’s directory.

For more information, see Generating Documentation.

3.1.12 install

Dune supports installing packages on the system, i.e., copying freshly built artifacts from the workspace to the system.
The install stanza takes three pieces of information:

• The list of files or directories to install

• The package to attach these files. This field is optional if your project contains a single package.

• The section in which the files will be installed

For instance:

(install
(files hello.txt)
(section share)
(package mypackage))

Indicate that the file hello.txt in the current directory is to be installed in <prefix>/share/mypackage.

The following sections are available:

74 Chapter 3. Reference Manual

Dune Documentation

Section Target Remarks
lib <prefix>/lib/<pkgname>/
lib_root <prefix>/lib/
libexec <prefix>/lib/<pkgname>/ executable bit is set
libexec_root <prefix>/lib/ executable bit is set
bin <prefix>/bin/ executable bit is set
sbin <prefix>/sbin/ executable bit is set
toplevel <prefix>/lib/toplevel/
share <prefix>/share/<pkgname>/
share_root <prefix>/share/
etc <prefix>/etc/<pkgname>/
stublibs <prefix>/lib/stublibs/ executable bit is set
doc <prefix>/doc/<pkgname>/
man <prefix>/man/manX/ (see below)
misc absolute destination (see below)
(site (<package> <site>)) <site> directory of <package> (see below)

Additional remarks:

• For man, the exact destination is inferred from the file extension. For example, foo.1 is installed as <prefix>/
man/man1/foo.1.

• misc only works when using opam. In that case, the user will be prompted before installation. This mechanism
is deprecated.

• In the case of (site), if the prefix isn’t the same as the one used when installing <package>, <package> won’t
find the files.

Normally, Dune uses the file’s basename to determine the file’s name once installed; however, you can change that by
using the form (<filename> as <destination>) in the files field. For instance, to install a file mylib.el as
<prefix>/emacs/site-lisp/mylib.el, you must write the following:

(install
(section share_root)
(files (mylib.el as emacs/site-lisp/mylib.el)))

The mode of installed files is fully determined by the section they are installed in. If the section above is documented as
with the executable bit set, they are installed with mode 0o755 (rwxr-xr-x); otherwise they are installed with mode
0o644 (rw-r--r--).

Note that all files in the install stanza must be specified by relative paths only. It is an error to specify files by absolute
paths.

Also note that as of dune-lang 3.11 (i.e., (lang dune 3.11) in dune-project) it is deprecated to use the as keyword
to specify a destination beginning with ... Dune intends for files associated with a package to only be installed under
specific directories in the file system implied by the installation section (e.g., share, bin, doc, etc.) and the package
name. Starting destination paths with .. allows packages to install files to arbitrary locations on the file system. In
3.11, this behaviour is still supported (as some projects may depend on it) but will generate a warning and will be
removed in a future version of Dune.

3.1. dune 75

Dune Documentation

Including Files in the Install Stanza

You can include external files from the files and dirs fields of the install stanza:

(install
(files (include foo.sexp))
(section share))

Here the file foo.sexp must contain a single S-expression list, whose elements will be included in the list of files or
directories to install. That is, elements may be of the form:

• <filename>

• (<filename> as <destination>)

• (include <filename>)

Included files may be generated by rules. Here is an example of a rule which generates a file by listing all the files in a
subdirectory resources:

(rule
(deps (source_tree resources))
(action
(with-stdout-to foo.sexp
(system "echo '(' resources/* ')'"))))

Globs in the Install Stanza

You can use globs to specify files to install by using the terms (glob_files <glob>) and (glob_files_rec
<glob>) inside the files field of the install stanza (but not inside the dirs field). See the glob for details of
the glob syntax. The (glob_files <glob>) term will expand its argument within a single directory, whereas the
(glob_files_rec <glob>) term will recursively expand its argument within all subdirectories.

For example:

(install
(files
(glob_files style/*.css)
(glob_files_rec content/*.html))

(section share))

This example will install:

• All files matching *.css in the style directory.

• All files matching *.html in the content directory, or any of its descendant subdirectories.

Note that the paths to files are preserved after installation. Suppose the source directory contained the files style/foo.
css and content/bar/baz.html. The example above will place these files in share/<package>/style/foo.css
and share/<package>/content/bar/baz.html respectively where <package> is the name of the package (ie.
dune-project would contain (package (name <package>))).

The with_prefix keyword can be used to change the destination path of files matched by a glob, similar to the as
keyword in the (files ...) field. with_prefix changes the prefix of a path before the component matched by the
* to some new value. For example:

76 Chapter 3. Reference Manual

Dune Documentation

(install
(files
(glob_files (style/*.css with_prefix web/stylesheets))
(glob_files_rec (content/*.html with_prefix web/documents)))

(section share))

Continuing the example above, this would result in the source file at style/foo.css being installed to share/
<package>/web/stylesheets/foo.css and content/bar/baz.html being installed to share/<package>/
web/documents/bar/baz.html. Note in the latter case with_prefix only replaced the content component of
the path and not the bar component since since it replaces the prefix of the glob - not the prefix of paths matching the
glob.

Installing Globs from Parent Directories

The default treatment of paths in globs creates a complication where referring to globs in a parent directory such
as (glob_files ../*.txt) would attempt to install the matched files outside the designated install directory. For
example writing:

(install
(files (glob_files ../*.txt))
(section share))

. . .would cause Dune to attempt to install the matching files to share/<package>/../, ie. share where <package>
is the name of the package (i.e., dune-project would contain (package (name <package>))). This is probably
not what the user intends, and installing files to relative paths beginning with .. is deprecated from version 3.11 of
Dune and will become an error in a future version.

The solution is to use with_prefix to replace the .. with some other path. For example:

(install
(files (glob_files (../*.txt with_prefix .)))
(section share))

. . .would install the matched files to share/<package>/ instead.

3.1. dune 77

Dune Documentation

Handling of the .exe Extension on Windows

Under Microsoft Windows, executables must be suffixed with .exe. Dune tries to ensure that executables are always
installed with this extension on Windows.

More precisely, when installing a file via an (install ...) stanza, Dune implicitly adds the .exe extension to the
destination, if the source file has extension .exe or .bc and if it’s not already present

Installing Source Directories

To install entire source directories, the source_tree field can be used:

(install
(section doc)
(source_trees manual))

This example results in the contents of the manual directory being installed under <prefix>/doc/<package>/
manual/.

As with (files ...) the destination can be changed with the as keyword. For example if you want to install all the
files in the manual directory directly into <prefix>/doc/<package>/ you can write:

(install
(section doc)
(source_trees (manual as .)))

It’s also possible to specify multiple directories:

(install
(section doc)
(source_trees manual examples))

This would result in the local directories manual and examples being installed to <prefix>/doc/<package>/
manual/ and <prefix>/doc/<package>/examples/ respectively.

Unlike with (files ...) it is an error to begin the destination (the right-hand side of as) with ... (This is because
support for installing source directories was added to Dune after destinations beginning with .. were deprecated.)

3.1.13 plugin

New in version 2.8.

Plugins are a way to load OCaml libraries at runtime. The plugin stanza allows you to declare the plugin’s name,
which sites should be present and which libraries it will load.

(plugin
(name <name>)
(libraries <libraries>)
(site (<package> <site name>))
(<optional-fields>))

<optional-fields> are:

• (package <package>) if there is more than one package defined in the current scope, this specifies which
package the plugin will install. A plugin can be installed by one package in the site of another package.

78 Chapter 3. Reference Manual

Dune Documentation

• (optional) will not declare the plugin if the libraries are not available.

The loading of the plugin is done using the facilities generated by generate_sites_module.

3.1.14 rule

The rule stanza is used to create custom user rules. It tells Dune how to generate a specific set of files from a specific
set of dependencies.

The syntax is as follows:

(rule
(action <action>)
<optional-fields>)

<action> is what you run to produce the targets from the dependencies. See Actions for more details.

<optional-fields> are:

• (target <filename>) or (targets <filenames>) ``<filenames> is a list of filenames (if defined with
targets) or exactly one filename (if defined with target). Dune needs to statically know targets of each rule.
(targets) can be omitted if it can be inferred from the action. See inferred rules.

• (deps <deps-conf list>) specifies the dependencies of the rule. See Dependency Specification for more
details.

• (mode <mode>) specifies how to handle the targets. See modes for details.

• (fallback) is deprecated and is the same as (mode fallback).

• (locks (<lock-names>)) specifies that the action must be run while holding the following locks. See Locks
for more details.

• (alias <alias-name>) specifies this rule’s alias. Building this alias means building the targets of this rule.

• (aliases <alias-name list>) specifies many aliases for this rule.

• (package <package>) specifies this rule’s package. This rule will be unavailable when installing other pack-
ages in release mode.

• (enabled_if <blang expression>) specifies the Boolean condition that must be true for the rule to be
considered. The condition is specified using the Boolean Language, and the field allows for Variables to appear
in the expressions.

Please note: contrary to makefiles or other build systems, user rules currently don’t support patterns, such as a rule to
produce %.y from %.x for any given %. This might be supported in the future.

Modes

By default, a rule’s target must not exist in the source tree because Dune will error out when this is the case; however,
it’s possible to change this behavior using the mode field. The following modes are available:

• standard - the standard mode.

• fallback - in this mode, when the targets are already present in the source tree, Dune will ignore the rule. It’s an
error if only a subset of the targets are present in the tree. Fallback rules are commonly used to generate default
configuration files that may be generated by a configure script.

• promote or (promote <options>) - in this mode, the files in the source tree will be ignored. Once the rule
has been executed, the targets will be copied back to the source tree. The following options are available:

3.1. dune 79

Dune Documentation

– (until-clean) means that dune clean will remove the promoted files from the source tree.

– (into <dir>) means that the files are promoted in <dir> instead of the current directory. This feature
has been available since Dune 1.8.

– (only <predicate>)means that only a subset of the targets should be promoted. The argument is similar
to the argument of subdir, specified using the Predicate Language. This feature has been available since
Dune 1.10.

There are two use cases for promote rules. The first one is when the generated code is easier to review than the
generator, so it’s easier to commit the generated code and review it. The second is to cut down dependencies during
releases. By passing --ignore-promoted-rules to Dune, rules with (mode promote) will be ignored, and the
source files will be used instead. The -p/--for-release-of-packages flag implies --ignore-promote-rules.
However, rules that promote only a subset of their targets via (only ...) are never ignored.

Inferred Rules

When using the action DSL (see Actions), the dependencies and targets are usually obvious.

For instance:

(rule
(target b)
(deps a)
(action (copy %{deps} %{target})))

In this example, the dependencies and targets are obvious by inspecting the action. When this is the case, you can use
the following shorter syntax and have Dune infer dependencies and targets for you:

(rule <action>)

For instance:

(rule (copy a b))

Note that in Dune, targets must always be known statically. For instance, this (rule ...) stanza is rejected by Dune:

(rule (copy a b.%{read:file}))

Directory targets

Note that at this time, Dune officially only supports user rules with targets in the current directory. However, starting
from Dune 3.0, we provide an experimental support for directory targets, where an action can produce a whole tree of
build artifacts. To specify a directory target, you can use the (dir <dirname>) syntax. For example, the following
stanza describes a rule with a file target foo and a directory target bar.

(rule
(targets foo (dir bar))
(action <action>))

To enable this experimental feature, add (using directory-targets 0.1) to your dune-project file. However
note that currently rules with a directory target are always rebuilt. We are working on fixing this performance bug.

80 Chapter 3. Reference Manual

Dune Documentation

3.1.15 alias

The alias stanza adds dependencies to an alias or specifies an action to run to construct the alias.

The syntax is as follows:

(alias
(name <alias-name>)
(deps <deps-conf list>)
<optional-fields>)

<name> is an alias name such as runtest.

<deps-conf list> specifies the dependencies of the alias. See Dependency Specification for more details.

<optional-fields> are:

• <action>, an action for constructing the alias. See Actions for more details. Note that this is removed in Dune
2.0, so users must port their code to use the rule stanza with the alias field instead.

• (package <name>) indicates that this alias stanza is part of package <name> and should be filtered out if
<name> is filtered out from the command line, either with --only-packages <pkgs> or -p <pkgs>.

• (locks (<lock-names>)) specifies that the action must be run while holding the following locks. See Locks
for more details.

• (enabled_if <blang expression>) specifies the Boolean condition that must be true for the tests to run.
The condition is specified using the Boolean Language, and the field allows for Variables to appear in the ex-
pressions.

The typical use of the alias stanza is to define tests:

(rule
(alias runtest)
(action (run %{exe:my-test-program.exe} blah)))

See the section about Running Tests for details.

Please note: if your project contains several packages, and you run the tests from the opam file using a build-test
field, all your runtest alias stanzas should have a (package ...) field in order to partition the set of tests.

3.1.16 copy_files

The copy_files and copy_files# stanzas specify that files from another directory could be copied to the current
directory, if needed.

The syntax is as follows:

(copy_files
<optional-fields>
(files <glob>))

<glob> represents the set of files to copy. See the glob for details.

<optional-fields> are:

• (alias <alias-name>) specifies an alias to which to attach the targets.

• (mode <mode>) specifies how to handle the targets. See Modes for details.

3.1. dune 81

Dune Documentation

• (enabled_if <blang expression>) conditionally disables this stanza. The condition is specified using the
Boolean Language.

• (only_sources <blang expression>) specifies that the glob in files gets applied over the source tree,
and not the build tree.

The short form:

(copy_files <glob>)

is equivalent to:

(copy_files (files <glob>))

The difference between copy_files and copy_files# is the same as the difference between the copy and copy#
actions. See Actions section for more details.

3.1.17 include

The include stanza allows including the contents of another file in the current dune file. Currently, the included
file cannot be generated and must be present in the source tree. This feature is intended for use in conjunction with
promotion, when parts of a dune file are to be generated.

For instance:

(include dune.inc)

(rule (with-stdout-to dune.inc.gen (run ./gen-dune.exe)))

(rule
(alias runtest)
(action (diff dune.inc dune.inc.gen)))

With this dune file, running Dune as follows will replace the dune.inc file in the source tree by the generated one:

$ dune build @runtest --auto-promote

3.1.18 dynamic_include

The dynamic_include stanza allows including the contents of another file in the current dune file like the include
stanza. However, the dynamic_include stanza allows the included file to be the target of a rule and disallows gener-
ating some stanzas.

For instance:

(subdir b
(dynamic_include ../a/foo.inc))
(subdir a
(rule
(write-file
foo.inc
"(rule (write-file file bar))")))

In the example above, the dynamic rule loading and generation are split into different directories to avoid rule loading
cycles as rules are loaded per directory.

82 Chapter 3. Reference Manual

Dune Documentation

The following stanzas cannot be dynamically generated:

• Libraries, coq theories, library redirects

• Public executables or install section with the bin section

• Plugin stanzas

3.1.19 env

The env stanza allows one to modify the environment. The syntax is as follows:

(env
(<profile1> <settings1>)
(<profile2> <settings2>)
...
(<profilen> <settingsn>))

The first form (<profile> <settings>) that corresponds to the selected build profile will be used to modify the
environment in this directory. You can use _ to match any build profile.

Fields supported in <settings> are:

• any OCaml flags field. See OCaml Flags for more details.

• (link_flags <flags>) specifies flags to OCaml when linking an executable. See executables stanza.

• (c_flags <flags>) and (cxx_flags <flags>) specify compilation flags for C and C++ stubs, respectively.
See library for more details.

• (env-vars (<var1> <val1>) .. (<varN> <valN>)) will add the corresponding variables to the environ-
ment where the build commands are executed and are used by dune exec.

• (menhir_flags <flags>)) specifies flags for Menhir stanzas. This flag was replaced by the (menhir) field
(see below) starting in version 3.0 of the Menhir extension.

• (menhir (flags <flags) (explain <blang expression>)) specifies the Menhir settings. See menhir
for more details. This field was introduced in version 3.0 of the Menhir extension.

• (js_of_ocaml (flags <flags>)(build_runtime <flags>)(link_flags <flags>)) specifies
js_of_ocaml flags. See js_of_ocaml for more details.

• (js_of_ocaml (compilation_mode <mode>)) controls whether to use separate compilation or not where
<mode> is either whole_program or separate.

• (js_of_ocaml (runtest_alias <alias-name>)) specifies the alias under which Inline Tests and tests
(tests) run for the js mode.

• (binaries <binaries>), where <binaries> is a list of entries of the form (<filepath> as <name>).
(<filepath> as <name>) makes the binary <filepath> available in the command search as just <name>.
For instance, in a (run <name> ...) action, <name>will resolve to this file path. You can also write just the file
path, in which case the name will be inferred from the basename of <filepath> by dropping the .exe suffix, if
it exists. For example, (binaries bin/foo.exe (bin/main.exe as bar)) would add the commands foo
and bar to the search path.

• (inline_tests <state>), where <state> is either enabled, disabled, or ignored. This field has been
available since Dune 1.11. It controls the variable’s value %{inline_tests}, which is read by the inline test
framework. The default value is disabled for the release profile and enabled otherwise.

• (odoc <fields>) allows passing options to odoc. See Passing Options to odoc for more details.

• (coq <coq_fields>) allow passing options to Coq. See Coq Environment Fields for more details.

3.1. dune 83

Dune Documentation

• (formatting <settings>) allows the user to set auto-formatting in the current directory subtree (see format-
ting).

• (bin_annot <bool>) allows the user to specify whether to generate *.cmt and *.cmti in the current directory
subtree.

3.1.20 dirs

New in version 1.6.

The dirs stanza allows specifying the subdirectories Dune will include in a build. The syntax is based on Dune’s
Predicate Language and allows the following operations:

• The special value :standard which refers to the default set of used directories. These are the directories that
don’t start with . or _.

• Set operations. Differences are expressed with backslash: * \ bar; unions are done by listing multiple items.

• Sets can be defined using globs.

Examples:

(dirs *) ;; include all directories
(dirs :standard \ ocaml) ;; include all dirs except ocaml
(dirs :standard \ test* foo*) ;; exclude all dirs that start with test or foo

Dune will not scan a directory that isn’t included in this stanza. Any contained dune (or other special) files won’t be
interpreted either and will be treated as raw data. It is however possible to depend on files inside ignored subdirectories.

3.1.21 data_only_dirs

New in version 1.6.

Dune allows the user to treat directories as data only. dune files in these directories won’t be evaluated for their rules,
but the contents of these directories will still be usable as dependencies for other rules.

The syntax is the same as for the dirs stanza except that :standard is empty by default.

Example:

;; dune files in fixtures_* dirs are ignored
(data_only_dirs fixtures_*)

3.1.22 ignored_subdirs

Deprecated since version 1.6.

One may also specify data only directories using the ignored_subdirs stanza, meaning it’s the same as
data_only_dirs, but the syntax isn’t as flexible and only accepts a list of directory names. It’s advised to switch
to the new data_only_dirs stanza.

Example:

(ignored_subdirs (<sub-dir1> <sub-dir2> ...))

All of the specified <sub-dirn> will be ignored by Dune. Note that users should rely on the dirs stanza along with
the appropriate set operations instead of this stanza. For example:

84 Chapter 3. Reference Manual

Dune Documentation

(dirs :standard \ <sub-dir1> <sub-dir2> ...)

3.1.23 include_subdirs

The include_subdirs stanza is used to control how Dune considers subdirectories of the current directory. The
syntax is as follows:

(include_subdirs <mode>)

Where <mode> maybe be one of:

• no, the default

• unqualified

• qualified

When the include_subdirs stanza isn’t present or <mode> is no, Dune considers subdirectories independent. When
<mode> is unqualified, Dune will assume that the current directory’s subdirectories are part of the same group of
directories. In particular, Dune will simultaneously scan all these directories when looking for OCaml/Reason files.
This allows you to split a library between several directories. unqualified means that modules in subdirectories are
seen as if they were all in the same directory. In particular, you cannot have two modules with the same name in two
different directories. When <mode> is qualified, each subdirectory’s files will be grouped into submodules of the
library module, mirroring the directory structure.

Note that subdirectories are included recursively; however, the recursion will stop when encountering a subdirectory
that contains another include_subdirs stanza. Additionally, it’s not allowed for a subdirectory of a directory with
(include_subdirs <x>) where <x> is not no to contain one of the following stanzas:

• library

• executable(s)

• test(s)

3.1.24 vendored_dirs

New in version 1.11.

Dune supports vendoring other Dune-based projects natively, since simply copying a project into a subdirectory of
your own project will work. Simply doing that has a few limitations though. You can workaround those by explicitly
marking such directories as containing vendored code.

Example:

(vendored_dirs vendor)

Dune will not resolve aliases in vendored directories. By default, it won’t build all installable targets, run the tests,
format, or lint the code located in such a directory while still building your project’s dependencies. Libraries and
executables in vendored directories will also be built with a -w -a flag to suppress all warnings and prevent pollution
of your build output.

3.1. dune 85

Dune Documentation

3.1.25 subdir

The subdir stanza can be used to evaluate stanzas in subdirectories. This is useful for generated files or to override
stanzas in vendored directories without editing vendored dune files.

In this example, a bar target is created in the foo directory, and a bar target will be created in a/b/bar:

(subdir foo (rule (with-stdout-to bar (echo baz))))
(subdir a/b (rule (with-stdout-to bar (echo baz))))

3.1.26 cinaps

A cinaps stanza is available to support the cinaps tool. See the cinaps website for more details.

3.1.27 coq.theory

See the documentation on the coq.theory, coq.extraction, coq.pp, and related stanzas.

3.1.28 mdx

New in version 2.4.

MDX is a tool that helps you keep your markdown documentation up-to-date by checking that its code examples are
correct. When setting an MDX stanza, the MDX checks are automatically attached to the runtest alias of the stanza’s
directory.

See MDX’s repository for more details.

You can define an MDX stanza to specify which files you want checked.

Note that this feature is still experimental and needs to be enabled in your dune-project with the following using
stanza:

(using mdx 0.4)

Note: Version 0.2 of the stanza requires mdx 1.9.0. Version 0.4 of the stanza requires mdx 2.3.0.

The syntax is as follows:

(mdx <optional-fields>)

Where <optional-fields> are:

• (files <globs>) are the files that you want MDX to check, described as a list of globs (see the Glob language
specification). It defaults to *.md *.mld as of version 0.4 of the stanza and *.md before.

• (deps <deps-conf list>) to specify the dependencies of your documentation code blocks. See Dependency
Specification for more details.

• (preludes <files>) are the prelude files you want to pass to MDX. See MDX’s documentation for more
details on preludes.

• (libraries <libraries>) are libraries that should be statically linked in the MDX test executable.

• (enabled_if <blang expression>) is the same as the corresponding field of library.

86 Chapter 3. Reference Manual

https://github.com/janestreet/cinaps
https://github.com/realworldocaml/mdx
https://github.com/realworldocaml/mdx

Dune Documentation

• (package <package>) specifies which package to attach this stanza to (similarly to when (package) is at-
tached to a (rule) stanza). When -p is passed, (mdx) stanzas with another package will be ignored. Note that
this feature is completely separate from (packages), which specifies some dependencies.

• (locks <lock-names>) specifies that the action of running the tests holds the specified locks. See Locks for
more details.

Upgrading from Version 0.1

• The 0.2 version of the stanza requires at least MDX 1.9.0. If you encounter an error such as, ocaml-mdx:
unknown command `dune-gen', then you should upgrade MDX.

• The field (packages <packages>) is deprecated in version 0.2. You can use package items in the generic
deps field instead: (deps (package <package>) ... (package <package>))

• Use the new libraries field to directly link libraries in the test executable and remove the need for #require
directives in your documentation code blocks.

3.1.29 menhir

A menhir stanza is available to support the Menhir parser generator.

To use Menhir in a Dune project, the language version should be selected in the dune-project file. For example:

(using menhir 2.0)

This will enable support for Menhir stanzas in the current project. If the language version is absent, Dune will auto-
matically add this line with the latest Menhir version once a Menhir stanza is used anywhere.

The basic form for defining menhir-git parsers (analogous to ocamlyacc) is:

(menhir
(modules <parser1> <parser2> ...)
<optional-fields>)

<optional-fields> are:

• (merge_into <base_name>) is used to define modular parsers. This correspond to the --base command line
option of menhir. With this option, a single parser named base_name is generated.

• (flags <option1> <option2> ...) is used to pass extra flags to Menhir.

• (infer <bool>) is used to enable Menhir with type inference. This option is enabled by default with Menhir
language 2.0.

Menhir supports writing the grammar and automation to the .cmly file. Therefore, if this is flag is passed to Menhir,
Dune will know to introduce a .cmly target for the module.

• (explain <blang expression>) is used to control the generation of the .conflicts file explaining con-
flicts found while generating the parser. The condition is specified using the Boolean Language. This field was
introduced in version 3.0 of the Menhir extension.

Note that starting in version 3.0 of the Menhir extension, the .conflicts file is generated by default. If this is not
desired, it needs to be disabled explicitly by using the (explain) field.

3.1. dune 87

https://gitlab.inria.fr/fpottier/menhir

Dune Documentation

3.1.30 ocamllex

(ocamllex <names>) is essentially a shorthand for:

(rule
(target <name>.ml)
(deps <name>.mll)
(action (chdir %{workspace_root}

(run %{bin:ocamllex} -q -o %{target} %{deps}))))

To use a different rule mode, use the long form:

(ocamllex
(modules <names>)
(mode <mode>))

3.1.31 ocamlyacc

(ocamlyacc <names>) is essentially a shorthand for:

(rule
(targets <name>.ml <name>.mli)
(deps <name>.mly)
(action (chdir %{workspace_root}

(run %{bin:ocamlyacc} %{deps}))))

To use a different rule mode, use the long form:

(ocamlyacc
(modules <names>)
(mode <mode>))

3.1.32 external_variant

This stanza was experimental and removed in Dune 2.6. See Variants.

3.1.33 jbuild_version

Deprecated. This jbuild_version stanza is no longer used and will be removed in the future.

3.2 dune-project

These files are used to mark the root of projects as well as define project-wide parameters. The first line of
dune-project must be a lang stanza with no extra whitespace or comments. The lang stanza controls the names
and contents of all configuration files read by Dune and looks like:

(lang dune 3.14)

Additionally, they can contains the following stanzas.

88 Chapter 3. Reference Manual

Dune Documentation

3.2.1 accept_alternative_dune_file_name

(accept_alternative_dune_file_name ...)

New in version 3.0.

Specify that the alternative filename dune-file is accepted in addition to dune.

This may be useful to avoid problems with dune files that have the executable permission in a directory in the
PATH, which can unwittingly happen on Windows.

Note that dune continues to be accepted even after enabling this option, but if a file named dune-file is found
in a directory, it will take precedence over dune.

3.2.2 cram

(cram <status>)

Define whether Cram-style tests are enabled for the project.

<status> can be either enable or disable. The default is enable starting from the language version 3.0.

See also:

Cram Tests

3.2.3 dialect

(dialect ...)

Declare a new dialect.

(name <name>)

The name of the dialect being defined. It must be unique in a given project.

This field is required.

(implementation ...)

Details related to the implementation files (corresponding to *.ml).

Changed in version 3.9: This field is made optional.

(extension <string>)

Specify the file extension used for this dialect.

The extension string must not start with a period and be unique in a given project (so that a given
extension can be mapped back to a corresponding dialect). In Dune 3.9 and later, the extension string
may contain periods (e.g., cppo.ml).

This field is required.

(preprocess <action>)

Run <action> to produce a valid OCaml abstract syntax tree.

This action is expected to read the file given in the variable named %{input-file} and output a
binary abstract syntax tree on its standard output.

If the field is not present, it is assumed that the corresponding source code is already valid OCaml code
and can be passed to the OCaml compiler as-is.

See also:

Preprocessing With Actions

3.2. dune-project 89

Dune Documentation

(format <action>)

Run <action> to format source code for this dialect.

The action is expected to read the file given in the variable named %{input-file} and output the
formatted source code on its standard output.

If the field is not present, the behavior depends on the presence of (preprocess): if it is also not
present (that is, the dialect consists of valid OCaml code), then the dialect will be formatted as any
other OCaml code. Otherwise no special formatting will be done.

See also:

How to Set up Automatic Formatting

(interface ...)

Details related to the interface files (corresponding to *.mli).

This field supports the same sub-fields as implementation.

Changed in version 3.9: This field is made optional.

3.2.4 Default dialects

Dune ships with two dialects pre-configured and enabled:

• ocaml for the default OCaml syntax which consumes .ml and .mli files and uses ocamlformat for formatting.

• reason for the Reason syntax and enabled in .re/.rei files. refmt is used for formatting.

A third dialect, rescript, is added when Melange support (see JavaScript Compilation With Melange) is enabled in
the project.

3.2.5 executables_implicit_empty_intf

(executables_implicit_empty_intf ...)

New in version 2.9.

Automatically generate empty interface files for executables and tests that do not already have them.

By default, executables defined via (executables(s) ...) or (test(s) ...) stanzas are compiled with the
interface file provided (e.g., .mli or rei). Since these modules cannot be used as library dependencies, it is
common to give them empty interface files to strengthen the compiler’s ability to detect unused values in these
modules.

This option, when enabled, will generate an empty *.mli file.

Example:

(executables_implicit_empty_intf true)

This option is enabled by default starting with Dune lang 3.0.

90 Chapter 3. Reference Manual

Dune Documentation

3.2.6 expand_aliases_in_sandbox

(expand_aliases_in_sandbox ...)

When a sandboxed action depends on an alias, copy the expansion of the alias inside the sandbox. For instance,
in the following example:

(alias
(name foo)
(deps ../x))

(cram
(deps (alias foo)))

File x will be visible inside the Cram test if and only if this option is enabled. This option is a better default in
general; however, it currently causes Cram tests to run noticeably slower. So it is disabled by default until the
performance issue with Cram test is fixed.

3.2.7 explicit_js_mode

(explicit_js_mode ...)

Do not implicitly add js to the (modes ...) field of executables.

In projects that use dune lang 1.x, JavaScript targets are defined for every bytecode executable. This is not very
precise and does not interact well with the @all alias.

It is possible to opt out of this behavior by using:

(explicit_js_mode)

When this is enabled, an explicit js mode needs to be added to the (modes ...) field of executables in order
to trigger the JavaScript compilation. Explicit JS targets declared like this will be attached to the @all alias.

Starting with Dune 2.0, this behavior is the default, and there is no way to disable it.

3.2.8 formatting

(formatting ...)

New in version 2.0.

Control automatic formatting. Several forms are accepted:

• To disable automatic formatting completely (equivalent to the behavior in language 1.x):

(formatting disabled)

• To restrict the languages that are considered for formatting:

(formatting
(enabled_for <languages>))

The list of <languages> can be either dune (formatting of dune files) or a dialect name.

See also:

How to Set up Automatic Formatting

3.2. dune-project 91

Dune Documentation

3.2.9 generate_opam_files

(generate_opam_files ...)

Use metadata specified in the dune-project file to generate .opam files.

To enable this integration, add the following field to the dune-project file:

(generate_opam_files)

See also:

How to Generate Opam Files from dune-project

Dune uses the following global fields to set the metadata for all packages defined in the project:

(license <strings>)

Specify the license of the project, ideally as an identifier from the SPDX License List.

Example:

(license MIT)

Multiple licenses may be specified.

(authors <strings>)

Specify authors.

Example:

(authors
"Jane Doe <jane.doe@example.com>"
"John Doe <john.doe@example.com>")

(maintainers <strings>)

Specify maintainers.

Example:

(maintainers
"Jane Doe <jane.doe@example.com>"
"John Doe <john.doe@example.com>")

(source ...)

Specify where the source for the package can be found.

It can be specified as (uri <uri>) or using shortcuts for some hosting services:

Service Syntax
Github (github user/repo)
Bitbucket (bitbucket user/repo)
Gitlab (gitlab user/repo)
Sourcehut (sourcehut user/repo)

Examples:

(source
(github ocaml/dune))

92 Chapter 3. Reference Manual

https://spdx.org/licenses/
https://github.com
https://bitbucket.org
https://gitlab.com
https://sr.ht

Dune Documentation

(source
(uri https://dev.example.com/project.git))

(bug_reports <url>)

Where bugs should be reported.

If a hosting service is used in (source), a default value is provided.

Example:

(bug_reports https://dev.example.com/project/issues)

(homepage <url>)

The homepage of the project.

If a hosting service is used in (source), a default value is provided.

Example:

(bug_reports https://example.com/)

(documentation <url>)

Where the documentation is hosted.

With these fields, every time one calls Dune to execute some rules (either via dune build, dune runtest, or some-
thing else), the opam files get generated.

Some or all of these fields may be overridden for each package of the project, see package.

3.2.10 implicit_transitive_deps

(implicit_transitive_deps ...)

Control whether transitive dependencies are made implicitly visible.

By default, Dune allows transitive dependencies of dependencies used when compiling OCaml. However, this
can be disabled by specifying:

(implicit_transitive_deps false)

Then all dependencies directly used by a library or an executable must be added in the libraries field.

We recommend users experiment with this mode and report any problems.

Note that you must use threads.posix instead of threads when using this mode. This isn’t an important
limitation, as threads.vm is deprecated anyway.

In some situations, it can be desirable to selectively preserve the behavior of transitive dependencies’ availability
a library’s users. For example, if we define a library foo_more that extends foo, we might want foo_more users
to immediately have foo available as well. To do this, we must define the dependency on foo as re-exported:

(library
(name foo_more)
(libraries (re_export foo)))

3.2. dune-project 93

Dune Documentation

3.2.11 map_workspace_root

(map_workspace_root <bool>)

Control references to the file system locations where the project has been built.

• with (map_workspace_root true), dune rewrites references to the workspace root to /
workspace_root. Note that when this mapping is enabled, the debug information produced by the
bytecode compiler is incorrect, as the location information is lost.

• with (map_workspace_root false), the references are not rewritten.

The default is (map_workspace_root true).

New in version 3.0: Initial version with the mapping always enabled.

Changed in version 3.7: Add a way to disable the mapping.

3.2.12 name

(name <string>)

Set the name of the project.

It is used by dune subst and error messages.

3.2.13 opam_file_location

(opam_file_location <location>)

New in version 3.8.

Configure where generated .opam files are located. <location> can be one of the following:

• relative_to_project: the .opam files are generated in the project root directory. This is the default.

• inside_opam_directory: the .opam files are generated in a directory named opam in the project root
directory.

See also:

How to Generate Opam Files from dune-project

3.2.14 package

(package ...)

Define package-specific metadata.

(name <string>)

The name of the package.

This must be specified.

(synopsis <string>)

A short package description.

(description <string>)

A longer package description.

94 Chapter 3. Reference Manual

Dune Documentation

(depends <dep-specification>)

Package dependencies, as dep_specification.

(conflicts <dep-specification>)

Package conflicts, as dep_specification.

(depopts <dep-specification>)

Optional package dependencies, as dep_specification.

(tags <tags>)

A list of tags.

(deprecated_package_names <name list>)

A list of names that can be used with the deprecated_library_name stanza to migrate legacy libraries from
other build systems that do not follow Dune’s convention of prefixing the library’s public name with the
package name.

(license ...)

New in version 2.0.

The same as (and takes precedences over) the corresponding global field.

(authors ...)

New in version 2.0.

The same as (and takes precedences over) the corresponding global field.

(maintainers ...)

New in version 2.0.

The same as (and takes precedences over) the corresponding global field.

(source ...)

New in version 2.0.

The same as (and takes precedences over) the corresponding global field.

(bug_reports ...)

New in version 2.0.

The same as (and takes precedences over) the corresponding global field.

(homepage ...)

New in version 2.0.

The same as (and takes precedences over) the corresponding global field.

(documentation ...)

New in version 2.0.

The same as (and takes precedences over) the corresponding global field.

(sites ...)

Define a site.

(sites (<section> <name>) ...) defines a site named <name> in the section <section>.

Adding libraries to different packages is done via the public_name and package fields. See library section for details.

The list of dependencies dep_specification is modelled after opam’s own language. The syntax is a list of the
following elements:

3.2. dune-project 95

Dune Documentation

op ::= '=' | '<' | '>' | '<>' | '>=' | '<='
filter ::= :dev | :build | :with-test | :with-doc | :post
constr ::= (<op> <version>)
logop ::= or | and
dep ::= <name>

(<name> <filter>)
(<name> <constr>)
(<name> (<logop> (<filter> | <constr>))*)

dep_specification ::= <dep>+

Filters will expand to any opam variable name if prefixed by :, not just the ones listed in filter. This also ap-
plies to version numbers. For example, to generate depends: [pkg { = version }], use (depends (pkg (=
:version))).

Note that the use of a using stanza (see using) doesn’t automatically add the associated library or tool as a dependency.
They have to be added explicitly.

3.2.15 subst

(subst <bool>)

Control whether dune subst is enabled for this project.

• (subst disabled), means that any call of dune subst in this project is forbidden and will result in an
error. This line will be omitted from the build instructions when generating opam files.

• (subst enabled) allows substitutions explicitly. This is the default.

3.2.16 use_standard_c_and_cxx_flags

(use_standard_c_and_cxx_flags ...)

New in version 2.8.

Control how flags coming from ocamlc -config are passed to the C compiler command line.

Historically, they have been systematically prepended without a way to override them.

If the following is passed, the mechanism is slightly altered:

(use_standard_c_and_cxx_flags)

In this mode, Dune will populate the :standard set of C flags with the content of ocamlc_cflags and
ocamlc_cppflags. These flags can be completed or overridden using the Ordered Set Language.

This is the default in the language version 3.0.

96 Chapter 3. Reference Manual

Dune Documentation

3.2.17 using

(using <plugin> <version>)

Enable a dune language extension.

The language of configuration files read by Dune can be extended to support additional stanzas (e.g., menhir,
coq.theory, mdx).

<plugin> is the name of the plugin that defines this stanza and <version> describes the configuration language’s
version. Note that this version has nothing to do with the version of the associated tool or library. In particular,
adding a using stanza will not result in a build dependency in the generated .opam file. See generate_opam_files.

Example:

(using mdx 0.3)

3.2.18 version

(version <version>)

Set the version of the project.

Example:

(version 1.2.3)

3.2.19 warnings

(warnings ...)

New in version 3.11.

Configure Dune warnings for the project.

(<name> <enabled | disabled>)

Enable or disable the warning <name> for the current project.

3.2.20 wrapped_executables

(wrapped_executables <bool>)

New in version 1.11.

Control wrapping of modules in executables.

Executables are made of compilation units whose names may collide with libraries’ compilation units. To avoid
this possibility, Dune prefixes these compilation unit names with Dune__exe__. This is entirely transparent
to users except when such executables are debugged. In which case, the mangled names will be visible in the
debugger.

• with (wrapped_executables false), the original names are used.

• with (wrapped_executables true), the names are mangled.

Starting in language version 2.0, the default value is true.

3.2. dune-project 97

Dune Documentation

3.3 dune-workspace

By default, a workspace has only one build context named default which corresponds to the environment, in which
dune is run. You can define more contexts by writing a dune-workspace file.

You can point Dune to an explicit dune-workspace file with the --workspace option. For instance, it’s good practice
to write a dune-workspace.dev in your project with all the OCaml versions your projects support, so developers can
test that the code builds with all OCaml versions by simply running:

$ dune build --workspace dune-workspace.dev @all @runtest

The dune-workspace file uses the S-expression syntax. This is what a typical dune-workspace file looks like:

(lang dune 3.14)
(context (opam (switch 4.07.1)))
(context (opam (switch 4.08.1)))
(context (opam (switch 4.11.1)))

The rest of this section describe the stanzas available.

Note that an empty dune-workspace file is interpreted the same as one containing exactly:

(lang dune 3.2)
(context default)

This allows you to use an empty dune-workspace file to mark the root of your project.

3.3.1 config stanzas

Starting in Dune 3.0, any of the stanzas from the config file can be used in the dune-workspace file. In this case, the
configuration stanza will only affect the current workspace.

3.3.2 context

The (context ...) stanza declares a build context. The argument can be either default or (default) for the
default build context, or it can be the description of an opam switch, as follows:

(context (opam (switch <opam-switch-name>)
<optional-fields>))

<optional-fields> are:

• (name <name>) is the subdirectory’s name for _build, where this build’s context artifacts will be stored.

• (root <opam-root>) is the opam root. By default, it will take the opam root defined by the environment in
which dune is run, which is usually ~/.opam.

• (merlin) instructs Dune to use this build context for Merlin.

• (profile <profile>) sets a different profile for a build context. This has precedence over the command-line
option --profile.

• (env <env>) sets the environment for a particular context. This is of higher precedence than the root env stanza
in the workspace file. This field has the same options as the env stanza.

• (toolchain <findlib_toolchain>) sets a findlib toolchain for the context.

98 Chapter 3. Reference Manual

Dune Documentation

• (host <host_context>) chooses a different context to build binaries that are meant to be executed on the host
machine, such as preprocessors.

• (paths (<var1> <val1>) .. (<varN> <valN>)) allows you to set the value of any PATH-like variables in
this context. If PATH itself is modified in this way, its value will be used to resolve workspace binaries, including
finding the compiler and related tools. These variables will also be passed as part of the environment to any
program launched by Dune. For each variable, the value is specified using the Ordered Set Language. Relative
paths are interpreted with respect to the workspace root. See Finding the Root.

• (fdo <target_exe>) builds this context with feedback-direct optimizations. It requires OCamlFDO.
<target_exe> is a path-interpreted relative to the workspace root (see Finding the Root). <target_exe> spec-
ifies which executable to optimize. Users should define a different context for each target executable built with
FDO. The context name is derived automatically from the default name and <target-exe>, unless explicitly
specified using the (name ...) field. For example, if <target_exe> is src/foo.exe in a default context, then the
name of the context is default-fdo-foo and the filename that contains execution counters is src/fdo.exe.fdo-profile.
This feature is experimental and no backwards compatibility is implied.

• By default, Dune builds and installs dynamically-linked foreign archives (usually named dll*.so). It’s possible
to disable this by setting by including (disable_dynamically_linked_foreign_archives true) in the
workspace file, so bytecode executables will be built with all foreign archives statically linked into the runtime
system.

Both (default ...) and (opam ...) accept a targets field in order to setup cross compilation. See Cross-
Compilation for more information.

Merlin reads compilation artifacts, and it can only read the compilation artifacts of a single context. Usually, you should
use the artifacts from the default context, and if you have the (context default) stanza in your dune-workspace
file, that is the one Dune will use.

For rare cases where this is not what you want, you can force Dune to use a different build contexts for Merlin by adding
the field (merlin) to this context.

3.3.3 env

The env stanza can be used to set the base environment for all contexts in this workspace. This environment has the
lowest precedence of all other env stanzas. The syntax for this stanza is the same as Dune’s env stanza.

3.3.4 profile

The build profile can be selected in the dune-workspace file by write a (profile ...) stanza. For instance:

(profile release)

Note that the command line option --profile has precedence over this stanza.

3.3. dune-workspace 99

https://github.com/gretay-js/ocamlfdo

Dune Documentation

3.4 config

This file is used to set Dune’s global configuration, which is applicable across projects and workspaces.

The configuration file is normally ~/.config/dune/config on Unix systems and %LOCALAPPDATA%/dune/config
on Windows. However, for most Dune commands, it is possible to specify an alternative configuration file with the
--config-file option. Command-line flags take precedence over the contents of the config file. If --no-config
or -p is passed, Dune will not read this file.

The config file can contain the following stanzas:

3.4.1 action_stdout_on_success

Specifies how Dune should handle the standard output of actions when they succeed. This can be used to reduce the
noise of large builds.

(action_stdout_on_success <setting>)

where <setting> is one of:

• print prints the output on the terminal. This is the default.

• swallow ignores the output and does not print it on the terminal.

• must-be-empty enforces that the output should be empty. If it is not, Dune will fail.

3.4.2 action_stderr_on_success

Same as action_stdout_on_success, but applies to standard error instead of standard output.

3.4.3 cache

Specifies whether Dune is allowed to store and fetch build targets from the Dune cache.

(cache <setting>)

where <setting> is one of:

• enabled enables Dune cache.

• disabled disables Dune cache.

3.4.4 cache-check-probability

While the main purpose of Dune cache is to speed up build times, it can also be used to check build reproducibility.
It is possible to enable a probabilistic check, in which Dune will re-execute randomly chosen build rules and compare
their results with those stored in the cache. If the results differ, the rule is not reproducible, and Dune will print out a
corresponding warning.

(cache-check-probability <number>)

where <number> is a floating-point number between 0 and 1 (inclusive). 0 means never to check for reproducibility,
and 1 means to always perform the check.

100 Chapter 3. Reference Manual

Dune Documentation

3.4.5 cache-storage-mode

Specify the mechanism used by the Dune cache for storage.

(cache-storage-mode <setting>)

where <setting> is one of:

• auto lets Dune decide the best mechanism to use.

• hardlink uses hard links for entries in the cache. If the cache is stored in a different partition than the one where
the build is taking place, then this mode will not work and copy should be used instead.

• copy copies entries to the cache. This is less efficient than using hard links.

3.4.6 display

Specify the amount of Dune’s verbosity.

(display <setting>)

where <setting> is one of:

• progress, Dune shows and updates a status line as build goals are being completed. This is the default value.

• verbose prints the full command lines of programs being executed by Dune, with some colors to help differen-
tiate programs.

• short prints a line for each program executed with the binary name on the left and the targets of the action on
the right.

• quiet only display errors.

3.4.7 jobs

Maximum number of concurrent jobs Dune is allowed to have.

(jobs <setting>)

where <setting> is one of:

• auto, auto-detect maximum number of cores. This is the default value.

• <number>, a positive integer specifying the maximum number of jobs Dune may use simultaneously.

3.4.8 sandboxing_preference

The preferred sandboxing setting. Individual rules may specify different preferences. Dune will try to utilize a setting
satisfying both conditions.

(sandboxing_preference <setting> <setting> ...)

where each <setting> can be one of:

• none disables sandboxing.

• hardlink uses hard links for sandboxing. This is the default under Linux.

3.4. config 101

Dune Documentation

• copy copies files for sandboxing. This is the default under Windows.

• symlink uses symbolic links for sandboxing.

3.4.9 terminal-persistence

Specifies how Dune handles the terminal when a rebuild is triggered in watch mode.

(terminal-persistence <setting>)

where <setting> is one of:

• preserve does not clear the terminal screen between rebuilds.

• clear-on-rebuild clears the terminal screen between rebuilds.

• clear-on-rebuild-and-flush-history clears the terminal between rebuilds, and it also deletes everything
in the scrollback buffer.

3.5 Lexical Conventions

All configuration files read by Dune use a simple syntax that’s similar to S-expressions. The Dune language can
represent three kinds of values: atoms, strings, and lists. By combining these, it’s possible to construct arbitrarily
complex project descriptions.

A Dune configuration file is a sequence of atoms, strings, or lists separated by spaces, newlines, and comments. The
other sections of this manual describe how each configuration file is interpreted, and we illustrate the syntax below:

3.5.1 Comments

The Dune language only has end of line comments. A semicolon introduces end of line comments and span up to the
end of the current line. The system ignores everything from the semicolon to the end of the line. For instance:

; This is a comment

3.5.2 Atoms

An atom is a non-empty contiguous sequences of character other than special characters. Special characters are:

• spaces, horizontal tabs, newlines and form feed

• opening and closing parenthesis

• double quotes

• semicolons

For instance hello or + are valid atoms.

Note that backslashes inside atoms have no special meaning and Dune always interprets them as plain backslash char-
acters.

102 Chapter 3. Reference Manual

Dune Documentation

3.5.3 Strings

A string is a sequence of characters surrounded by double quotes. A string represent the exact text between the dou-
ble quotes, except for escape sequences. A backslash character introduces escape sequences. Dune recognizes and
interprets the following escape sequences:

• \n to represent a newline character

• \r to represent a carriage return (character with ASCII code 13)

• \b to represent ASCII character 8

• \t to represent a horizontal tab

• \NNN, a backslash followed by three decimal characters to represent the character with ASCII code NNN

• \xHH, a backslash followed by two hexadecimal characters to represent the character with ASCII code HH in
hexadecimal

• \\, a double backslash to represent a single backslash

• \%{ to represent %{ (see Variables)

Additionally, you can use a backslash just before the end of the line. This skips the newline leading up to the next
non-space character. For instance, the following two strings represent the same text:

"abcdef"
"abc\

def"

In most places where Dune expects a string, it will also accept an atom. As a result, it’s possible to write most Dune
configuration files using very few double quotes. This is very convenient in practice.

3.5.4 End of Line Strings

You can also write string using end of line strings. They are a convenient way to write blocks of text inside a Dune file.

The characters "\| or "\> introduce end of line strings and span to the end of the current line. If the next line also starts
with "\| or "\>, Dune reads it as a continuation of the same string. For readability, either leave the text following the
delimiter empty or start it with a space (that will be ignored).

For instance:

"\| this is a block
"\| of text

represents the same text as the string "this is a block\nof text".

Escape sequences are interpreted in text that follows "\| but not in text that follows "\>. Both delimiters can be mixed
inside the same block of text.

3.5. Lexical Conventions 103

Dune Documentation

3.5.5 Lists

Lists are sequences of values enclosed by parentheses. For instance (x y z) is a list containing the three atoms x, y
and z. Lists can be empty, for instance: ().

Lists can be nested, allowing arbitrary representation for complex descriptions. For instance:

(html
(head (title "Hello world!"))
(body
This is a simple example of using S-expressions))

3.6 Actions

(action ...) fields describe user actions.

User actions are always run from the same subdirectory of the current build context as the dune file they are defined
in, so for instance, an action defined in src/foo/dune will be run from $build/<context>/src/foo.

The argument of (action ...) fields is a small DSL that’s interpreted by Dune directly and doesn’t require an external
shell. All atoms in the DSL support Variables. Moreover, you don’t need to specify dependencies explicitly for the
special %{<kind>:...} forms; these are recognized and automatically handled by Dune.

The DSL is currently quite limited, so if you want to do something complicated, it’s recommended to write a small
OCaml program and use the DSL to invoke it. You can use shexp to write portable scripts or Configurator for config-
uration related tasks. You can also use (Experimental) Dune Action Plugin to express program dependencies directly
in the source code.

The following constructions are available:

3.6.1 run

(run <prog> <args>)

Execute a program. <prog> is resolved locally if it is available in the current workspace, otherwise it is resolved
using the PATH.

Example:

(run capnp compile -o %{bin:capnpc-ocaml} schema.capnp)

3.6.2 system

(system <cmd>)

Execute a command using the system shell: sh on Unix and cmd on Windows.

Example:

(system "command arg1 arg2")

104 Chapter 3. Reference Manual

https://github.com/janestreet/shexp

Dune Documentation

3.6.3 bash

(bash <cmd>)

Execute a command using /bin/bash. This is obviously not very portable.

Example:

(bash "echo $PATH")

3.6.4 dynamic-run

(dynamic-run <prog> <args>)

Execute a program that was linked against the dune-action-plugin library. <prog> is resolved in the same
way as in run.

Example:

(dynamic-run ./plugin.exe)

3.6.5 chdir

(chdir <dir> <DSL>)

Run an action in a different directory.

Example:

(chdir src
(run ./build.exe))

3.6.6 setenv

(setenv <var> <value> <DSL>)

Run an action with an environment variable set.

Example:

(setenv
VAR value
(bash "echo $VAR"))

3.6.7 with-accepted-exit-codes

(with-accepted-exit-codes <pred> <DSL>)

New in version 2.0.

Specifies the list of expected exit codes for the programs executed in <DSL>. <pred> is a predicate on integer
values, and it’s specified using the Predicate Language. <DSL> can only contain nested occurrences of run,
bash, system, chdir, setenv, ignore-<outputs>, with-stdin-from, and with-<outputs>-to.

Example:

3.6. Actions 105

Dune Documentation

(with-accepted-exit-codes
(or 1 2)
(run false))

3.6.8 echo

(echo <string>)

Output a string on stdout.

Example:

(echo "Hello, world")

3.6.9 with-<outputs>-to

(with-<outputs>-to <file> <DSL>)

Redirect the output to a file, where <outputs> is one of: stdout, stderr or outputs (for both stdout and
stderr).

Example:

(with-stdout-to conf.txt
(run ./get-conf.exe))

3.6.10 with-stdin-from

(with-stdin-from <file> <DSL>)

Redirect the input from a file.

Example:

(with-stdin-from data.txt
(run ./tests.exe))

3.6.11 ignore-<outputs>

(ignore-<outputs> <DSL>)

Ignore the output, where <outputs> is one of: stdout, stderr, or outputs.

Example:

(ignore-stderr
(run ./get-conf.exe))

106 Chapter 3. Reference Manual

Dune Documentation

3.6.12 cat

(cat <file> ...)

Sequentially print the contents of files to stdout.

Example:

(cat data.txt)

3.6.13 copy

(copy <src> <dst>)

Copy a file. If these files are OCaml sources, you should follow the module_name.xxx.ml naming convention
to preserve Merlin’s functionality.

Example:

(copy data.txt.template data.txt)

3.6.14 copy#

(copy# <src> <dst>)

Copy a file and add a line directive at the beginning.

Example:

(copy# config.windows.ml config.ml)

More precisely, copy# inserts the following line:

1 "<source file name>"

Most languages recognize such lines and update their current location to report errors in the original file rather
than the copy. This is important because the copy exists only under the _build directory, and in order for editors
to jump to errors when parsing the build system’s output, errors must point to files that exist in the source tree.
In the beta versions of Dune, copy# was called copy-and-add-line-directive. However, most of time, one
wants this behavior rather than a bare copy, so it was renamed to something shorter.

3.6.15 write-file

(write-file <file> <string>)

Writes <string> to <file>.

Example:

(write-file users.txt jane,joe)

3.6. Actions 107

Dune Documentation

3.6.16 pipe-<outputs>

(pipe-<outputs> <DSL> <DSL> <DSL>...)

New in version 2.7.

Execute several actions (at least two) in sequence, filtering the <outputs> of the first command through the
other command, piping the standard output of each one into the input of the next.

Example:

(pipe-stdout
(run ./list-tests.exe)
(run ./exec-tests.exe))

3.6.17 diff

(diff <file1> <file2>)

(diff <file1> <file2>) is similar to (run diff <file1> <file2>) but is better and allows promotion.
See Diffing and Promotion for more details.

Example:

(diff test.expected test.output)

3.6.18 diff?

(diff? <file1> <file2>)

(diff? <file1> <file2>) is similar to (diff <file1> <file2>) except that <file2> should be pro-
duced by a part of the same action rather than be a dependency, is optional and will be consumed by diff?.

Example:

(progn
(with-stdout-to test.output (run ./test.exe))
(diff? test.expected test.output))

3.6.19 cmp

(cmp <file1> <file2>)

(cmp <file1> <file2>) is similar to (run cmp <file1> <file2>) but allows promotion. See Diffing and
Promotion for more details.

Example:

(cmp bin.expected bin.output)

108 Chapter 3. Reference Manual

Dune Documentation

3.6.20 progn

(progn <DSL> ...)

Execute several commands in sequence.

Example:

(progn
(run ./proga.exe)
(run ./progb.exe))

3.6.21 concurrent

(concurrent <DSL> ...)

Execute several commands concurrently and collect all resulting errors, if any.

Warning: The concurrency is limited by the -j flag passed to Dune. In particular, if Dune is running with
-j 1, these commands will actually run sequentially, which may cause a deadlock if they talk to each other.

Example:

(concurrent
(run ./proga.exe)
(run ./progb.exe))

3.6.22 no-infer

(no-infer <DSL>)

Perform an action without inference of dependencies and targets. This is useful if you are generating dependen-
cies in a way that Dune doesn’t know about, for instance by calling an external build system.

Example:

(no-infer
(progn
(run make)
(copy mylib.a lib.a)))

Note: expansion of the special %{<kind>:...} is done relative to the current working directory of the DSL being
executed. So for instance, if you have this action in a src/foo/dune:

(action (chdir ../../.. (echo %{dep:dune})))

Then %{dep:dune} will expand to src/foo/dune. When you run various tools, they often use the filename given on
the command line in error messages. As a result, if you execute the command from the original directory, it will only
see the basename.

To understand why this is important, let’s consider this dune file living in src/foo:

3.6. Actions 109

Dune Documentation

(rule
(target blah.ml)
(deps blah.mll)
(action
(run ocamllex -o %{target} %{deps})))

Here the command that will be executed is:

$ ocamllex -o blah.ml blah.mll

And it will be executed in _build/<context>/src/foo. As a result, if there is an error in the generated blah.ml
file, it will be reported as:

File "blah.ml", line 42, characters 5-10:
Error: ...

Which can be a problem, as your editor might think that blah.ml is at the root of your project. Instead, this is a better
way to write it:

(rule
(target blah.ml)
(deps blah.mll)
(action
(chdir %{workspace_root}
(run ocamllex -o %{target} %{deps}))))

3.7 Ordered Set Language

A few fields take an ordered set as argument and can be specified using a small DSL.

Dune interprets this DSL into an ordered set of strings using the following rules:

• :standard denotes the standard value of the field when it’s absent

• an atom not starting with a : is a singleton containing only this atom

• a list of sets is the concatenation of its inner sets

• (<sets1> \ <sets2>) is the set composed of elements of <sets1> that do not appear in <sets2>

In addition, some fields support the inclusion of an external file using the syntax (:include <filename>). For
instance, this is useful when you need to run a script to figure out some compilation flags. <filename> is expected to
contain a single S-expression and cannot contain (:include ...) forms.

Note that inside an ordered set, a list’s first element cannot be an atom except if it starts with - or :. The reason for this
is that we’re planning to add simple programmatic features in the future so that one may write:

(flags (if (>= %{ocaml_version} 4.06) ...))

This restriction will allow you to add this feature without introducing breaking changes. If you want to write a list
where the first element doesn’t start with -, you can simply quote it: ("x" y z).

Most fields using the ordered set language also support Variables. Variables are expanded after the set language is
interpreted.

110 Chapter 3. Reference Manual

Dune Documentation

3.8 Boolean Language

The Boolean language allows the user to define simple Boolean expressions that Dune can evaluate. Here’s a semiformal
specification of the language:

op ::= '=' | '<' | '>' | '<>' | '>=' | '<='
expr ::= (and <expr>+)

(or <expr>+)
(<op> <template> <template>)
(not <expr>)
<template>

After an expression is evaluated, it must be exactly the string true or false to be considered as a Boolean. Any other
value will be treated as an error.

Below is a simple example of a condition expressing that the build has a Flambda compiler, with the help of variable
expansion, and is targeting OSX:

(and %{ocaml-config:flambda} (= %{ocaml-config:system} macosx))

3.9 Predicate Language

The predicate language allows the user to define simple predicates (Boolean-valued functions) that Dune can evaluate.
Here is a semiformal specification of the predicate language:

pred ::= (and pred pred)
(or pred pred)
(not pred)
:standard
element

The exact meaning of :standard and the nature of element depend on the context. For example, in the case of the
subdir, an element corresponds to file glob patterns. Another example is the user action with-accepted-exit-codes,
where an element corresponds to a literal integer.

3.10 Library Dependencies

Library dependencies are specified using (libraries ...) fields in library and executables stanzas.

For libraries defined in the current scope, you can either use the real name or the public name. For libraries that are
part of the installed world, or for libraries that are part of the current workspace but in another scope, you need to use
the public name. For instance: (libraries base re).

When resolving libraries, ones that are part of the workspace are always preferred to ones that are part of the installed
world.

3.8. Boolean Language 111

Dune Documentation

3.10.1 Alternative Dependencies

Sometimes, one doesn’t want to depend on a specific library but rather on whatever is already installed, e.g., to use a
different backend, depending on the target.

Dune allows this by using a (select ... from ...) form inside the list of library dependencies.

Select forms are specified as follows:

(select <target-filename> from
(<literals> -> <filename>)
(<literals> -> <filename>)
...)

<literals> are lists of literals, where each literal is one of:

• <library-name>, which will evaluate to true if <library-name> is available, either in the workspace or in
the installed world

• !<library-name>, which will evaluate to true if <library-name> is not available in the workspace or in the
installed world

When evaluating a select form, Dune will create <target-filename> by copying the file given by the first
(<literals> -> <filename>) case where all the literals evaluate to true. It is an error if none of the clauses are
selectable. You can add a fallback by adding a clause of the form (-> <file>) at the end of the list.

3.10.2 Re-Exported Dependencies

A dependency foo may be marked as always re-exported using the following syntax:

(re_export foo)

For instance:

(library
(name bar)
(libraries (re_export foo)))

This states that this library explicitly re-exports the interface of foo. Concretely, when something depends on bar, it
will also be able to see foo independently of whether implicit transitive dependencies are allowed or not. When they
are allowed, which is the default, all transitive dependencies are visible, whether they are marked as re-exported or not.

3.11 Preprocessing Specification

Some stanzas including (library) accept a (preprocessing) field. The possible values for its argument are:

pp-spec ::= <pp-module>
(per-module <per-module>+)

per-module ::= (<pp-module> <module>+)
pp-module ::= no_preprocessing

(action <action>)
(pps <ppx-rewriters-and-flags>)
(staged_pps <ppx-rewriters-and-flags>)

112 Chapter 3. Reference Manual

Dune Documentation

future_syntax

3.11.1 no_preprocessing

When no_preprocessing is passed, files are given as-is to the compiler. This is the default behavior.

3.11.2 Preprocessing With Actions

In (action <action>), <action> uses the same DSL as described in Actions, and for the same reason given in that
section, it will be executed from the root of the current build context. It’s expected to be an action that reads the file
given as a dependency named input-file and outputs the preprocessed file on its standard output.

More precisely, (preprocess (action <action>)) acts as if you had set up a rule for every file of the form:

(rule
(target file.pp.ml)
(deps file.ml)
(action
(with-stdout-to %{target}
(chdir %{workspace_root} <action>))))

The equivalent of a -pp <command> option passed to the OCaml compiler is (system "<command>
%{input-file}").

3.11.3 Using PPX Rewriters

If (pps <ppx-rewriters-and-flags>) is used, the corresponding rewriters are set up using the “fast pipeline”
(using a separate preprocessing step). If (staged_pps <ppx-rewriters-and-flags>) is used, they are set up
using the “classic pipeline” (using the -ppx command-line argument).

The distinction between these pipelines is explained in How Preprocessing Works.

PPX rewriters need to be compiled as a driver to be used by Dune. To run PPXs that do not support this (usually old
ones), it is possible to use the ppxfind tool.

3.11.4 Arguments to PPX Rewriters

In (pps <ppx-rewriters-and-flags>) and (staged_pps <ppx-rewriters-and-flags>),
<ppx-rewriters-and-flags> is a sequence where each element is either a command line flag if it starts
with a - or the name of a library.

If you want to pass command line flags that don’t start with a -, you can separate library names from flags using --.
So for instance from the following preprocess field:

(preprocess (pps ppx1 -foo ppx2 -- -bar 42))

The list of libraries will be ppx1 and ppx2, and the command line arguments will be: -foo -bar 42.

3.11. Preprocessing Specification 113

https://github.com/kandu/ppxfind

Dune Documentation

3.11.5 Future Syntax

The future_syntax specification is a special value that brings some of the newer OCaml syntaxes to older compilers.

It is equivalent to no_preprocessing when using one of the most recent versions of the compiler. When using an
older one, it is a shim preprocessor that backports some of the newer syntax elements. This allows you to use some of
the new OCaml features while keeping compatibility with older compilers.

One example of supported syntax is the custom let-syntax that was introduced in 4.08, allowing the user to define
custom let operators.

Note that this feature is implemented by the third-party ocaml-syntax-shims project, so if you use this feature, you must
also declare a dependency on this package.

3.11.6 Per-Module Preprocessing Specification

By default, a preprocessing specification applies to all modules in the library/set of executables. It’s possible to select
the preprocessing on a module-by-module basis by using the (per-module ...) syntax. For instance:

(preprocess
(per_module
((action (run ./pp.sh X=1 %{input-file})) foo bar)
((action (run ./pp.sh X=2 %{input-file})) baz)))

The modules Foo and Bar will be preprocessed with pp.sh X=1, and Baz will be preprocessed with pp.sh X=2.

3.11.7 Preprocessor Dependencies

If your preprocessor needs extra dependencies, you should use the preprocessor_deps field available in the library,
executable, and executables stanzas. It uses the Dependency Specification to declare what the preprocessor needs.

3.12 Cram Tests

3.12.1 Synopsis

Cram tests are integrations tests that describe a shell session. These tests contain commands and expected outputs.
When executed, the commands are executed and the actual output is compared to the expected output.

Here is an example showing how echo, cat, and rm interact.

Create a file:

$ echo contents > data.txt

Display it:

$ cat data.txt
contents

Remove it:

$ rm data.txt
(continues on next page)

114 Chapter 3. Reference Manual

https://github.com/ocaml-ppx/ocaml-syntax-shims

Dune Documentation

(continued from previous page)

Try to remove it again:

$ rm data.txt
rm: cannot remove 'data.txt': No such file or directory
[1]

The syntax mimics a shell session: there are comments and shell commands with their output.

3.12.2 Examples

Simple Commands

This is the simplest test case: it executes the command touch this-file.txt and expects that the command has no
output.

$ touch this-file.txt

Output

This executes ls and expects it to display this-file.txt:

$ ls
this-file.txt

There can be several output lines if the command is expected to print several lines. Also, note that if a command has
no output, the next one can come in the next line.

$ touch other-file.txt
$ ls
other-file.txt
this-file.txt

Comments

Lines that are not indented are ignored. These act as comments.

"touch" will create an empty file:

$ touch data.txt

Printing it will do nothing:

$ cat data.txt

3.12. Cram Tests 115

Dune Documentation

Continuation Lines

Continuation lines are used when a command fits on several lines. This can happen in all the cases where pressing
Enter would not run the command. For example, when passing a backslash character to escape the line ending. In that
case, all the continuation lines are grouped together as a single command.

This syntax mimics the PS2 prompt in shells - the “>” character is not passed to the command.

$ echo \
> a \
> b \
> d \
> c
a b c d

This is often used with shell “heredocs” to create files:

$ cat > file.txt << EOF
> Everything
> here will
> written to
> the file
> EOF

$ cat file.txt
Everything
here will
written to
the file

Exit Codes

When a command exits with a nonzero exit code, it is displayed between square brackets after its output:

$ false
[1]

$ echo hello; false
hello
[1]

3.12.3 Syntax Details

Cram tests are parsed line by line, depending on the first characters of each line:

• If a line starts with ␣␣$␣ (␣ denoting a space character), the rest is a command.

• If it starts with ␣␣>␣, the rest is the continuation of a command (continuation lines must immediately follow a
command).

• If it start with ␣␣ and something else, the rest is the expected output or exit code of the previous command.

• Everything else is a comment.

116 Chapter 3. Reference Manual

Dune Documentation

3.12.4 File and Directory Tests

There are two types of Cram tests: file tests and directory tests. File tests are files with a .t extension. Directory tests
are files named run.t within a directory with a name that ends with .t.

A Cram test begins its execution in a temporary directory where its dependencies (as listed in the corresponding cram
stanzas, if any) are available. In the case of a directory test, the contents of the directory are also available.

File tests have the nice property that they are self-contained: everything happens in a single file. This is handy because
it does not make a deep file hierarchy in a project. But if the test requires some files, these need to be created using cat
and heredocs. Directory tests, on the other hand, allow creating these test fixtures as normal files. This can be more
comfortable because it makes the usual tooling (syntax highlighting, completion, etc.) available.

3.12.5 Executing Cram Tests

Every Cram test has a name. For file tests, the name of something.t is something, and for directory tests, the name
of something.t/run.t is something.

There are several ways to execute Cram tests:

• All Cram tests are attached to the @runtest alias. So dune runtest will run all Cram tests.

• Every Cram test creates an alias after its name. So, dune build @somethingwill run tests named something.

When a Cram test is executed, the commands it contains are executed, and a corrected file is created where the command
outputs are inserted after each command. This corrected file is then offered for promotion by Dune.

Concretely, this means that Dune will display the difference between the Cram test’s current contents and the latest
run’s output. This diff can be applied by running dune promote, as usual.

$ touch changed-name.txt
$ ls
-other-file.txt
+changed-name.txt
this-file.txt

3.13 Scopes

Any directory containing at least one <package>.opam file defines a scope. This scope is the subtree starting from
this directory, excluding any other scopes rooted in subdirectories.

Typically, any given project will define a single scope. Libraries and executables that aren’t meant to be installed will
be visible inside this scope only.

Because scopes are exclusive, if you wish to include your current project’s dependencies in your workspace, you can
copy them in a vendor directory, or any name of your choice. Dune will look for them there rather than in the installed
world, and there will be no overlap between the various scopes.

3.13. Scopes 117

Dune Documentation

3.14 Variables

Some fields can contains variables that are expanded by Dune. The syntax of variables is as follows:

%{var}

or, for more complex forms that take an argument:

%{fun:arg}

In order to write a plain %{, you need to write \%{ in a string.

Dune supports the following variables:

• project_root is the root of the current project. It is typically the root of your project, and as long as you have
a dune-project file there, project_root is independent of the workspace configuration.

• workspace_root is the root of the current workspace. Note that the value of workspace_root isn’t constant
and depends on whether your project is vendored or not.

• cc is the C compiler command line (list made of the compiler name followed by its flags) that will be used to
compile foreign code. For more details about its content, please see this section.

• cxx is the C++ compiler command line being used in the current build context.

• ocaml_bin is the path where ocamlc lives.

• ocaml is the ocaml binary.

• ocamlc is the ocamlc binary.

• ocamlopt is the ocamlopt binary.

• ocaml_version is the version of the compiler used in the current build context.

• ocaml_where is the output of ocamlc -where.

• arch_sixtyfour is true if using a compiler that targets a 64-bit architecture and false otherwise.

• null is /dev/null on Unix or nul on Windows.

• ext_obj, ext_asm, ext_lib, ext_dll, and ext_exe are the file extensions used for various artifacts.

• ext_plugin is .cmxs if natdynlink is supported and .cma otherwise.

• ocaml-config:v is for every variable v in the output of ocamlc -config. Note that Dune processes the output
of ocamlc -config in order to make it a bit more stable across versions, so the exact set of variables accessible
this way might not be exactly the same as what you can see in the output of ocamlc -config. In particular,
variables added in new OCaml versions need to be registered in Dune before they can be used.

• profile is the profile selected via --profile.

• context_name is the name of the context (default, or defined in the workspace file)

• os_type is the type of the OS the build is targeting. This is the same as ocaml-config:os_type.

• architecture is the type of the architecture the build is targeting. This is the same as
ocaml-config:architecture.

• model is the type of the CPU the build is targeting. This is the same as ocaml-config:model.

• system is the name of the OS the build is targeting. This is the same as ocaml-config:system.

• ignoring_promoted_rule is true if --ignore-promoted-rules was passed on the command line and
false otherwise.

118 Chapter 3. Reference Manual

Dune Documentation

• <ext>:<path> where <ext> is one of cmo, cmi, cma, cmx, or cmxa. See Variables for Artifacts.

• env:<var>=<default expands to the value of the environment variable <var>, or <default> if it does not
exist. For example, %{env:BIN=/usr/bin}. Available since Dune 1.4.0.

• There are some Coq-specific variables detailed in Coq-Specific Variables.

In addition, (action ...) fields support the following special variables:

• target expands to the one target.

• targets expands to the list of target.

• deps expands to the list of dependencies.

• ^ expands to the list of dependencies, separated by spaces.

• dep:<path> expands to <path> (and adds <path> as a dependency of the action).

• exe:<path> is the same as <path>, except when cross-compiling, in which case it will expand to <path> from
the host build context.

• bin:<program> expands <path> to program. If program is installed by a workspace package (see install
stanzas), the locally built binary will be used, otherwise it will be searched in the <path> of the current build
context. Note that (run %{bin:program} ...) and (run program ...) behave in the same way. %{bin:.
..} is only necessary when you are using (bash ...) or (system ...).

• bin-available:<program> expands to true or false, depending on whether <program> is available or not.

• lib:<public-library-name>:<file> expands to the file’s installation path <file> in the library
<public-library-name>. If <public-library-name> is available in the current workspace, the local file
will be used, otherwise the one from the installed world will be used.

• lib-private:<library-name>:<file> expands to the file’s build path <file> in the library
<library-name>. Both public and private library names are allowed as long as they refer to libraries
within the same project.

• libexec:<public-library-name>:<file> is the same as lib:..., except when cross-compiling, in which
case it will expand to the file from the host build context.

• libexec-private:<library-name>:<file> is the same as lib-private:... except when cross-
compiling, in which case it will expand to the file from the host build context.

• lib-available:<library-name> expands to true or false depending on whether the library is available or
not. A library is available if at least one of the following conditions holds:

– It’s part the installed world.

– It’s available locally and is not optional.

– It’s available locally, and all its library dependencies are available.

• version:<package> expands to the version of the given package. Packages defined in the current scope have
priority over the public packages. Public packages that don’t install any libraries will not be detected. How Dune
determines the version of a package is described here.

• read:<path> expands to the contents of the given file.

• read-lines:<path> expands to the list of lines in the given file.

• read-strings:<path> expands to the list of lines in the given file, unescaped using OCaml lexical convention.

The %{<kind>:...} forms are what allows you to write custom rules that work transparently, whether things are
installed or not.

Note that aliases are ignored by %{deps}

3.14. Variables 119

Dune Documentation

The intent of this last form is to reliably read a list of strings generated by an OCaml program via:

List.iter (fun s -> print_string (String.escaped s)) l

1. Dealing with circular dependencies introduced by variables

If you ever see Dune reporting a dependency cycle that involves a variable such as %{read:<path>}, try to move
<path> to a different directory.

The reason you might see such dependency cycle is because Dune is trying to evaluate the %{read:<path>} too early.
For instance, let’s consider the following example:

(rule
(targets x)
(enabled_if %{read:y})
(action ...))

(rule
(with-stdout-to y (...)))

When Dune loads and interprets this file, it decides whether the first rule is enabled by evaluating %{read:y}. To
evaluate %{read:y}, it must build y. To build y, it must figure out the build rule that produces y, and in order to do
that, it must first load and evaluate the above dune file. You can see how this creates a cycle.

Some cycles might be more complex. In any case, when you see such an error, the easiest thing to do is move the file
that’s being read to a different directory, preferably a standalone one. You can use the subdir stanza to keep the logic
self-contained in the same dune file:

(rule
(targets x)
(enabled_if %{read:dir-for-y/y})
(action ...))

(subdir
dir-for-y
(rule
(with-stdout-to y (...))))

3.14.1 Expansion of Lists

Forms that expand to a list of items, such as %{cc}, %{deps}, %{targets}, or %{read-lines:...}, are suitable to
be used in (run <prog> <arguments>). For instance in:

(run foo %{deps})

If there are two dependencies, a and b, the produced command will be equivalent to the shell command:

$ foo "a" "b"

If you want both dependencies to be passed as a single argument, you must quote the variable:

(run foo "%{deps}")

which is equivalent to the following shell command:

120 Chapter 3. Reference Manual

Dune Documentation

$ foo "a b"

(The items of the list are concatenated with space.) Please note: since %{deps} is a list of items, the first one may be
used as a program name. For instance:

(rule
(targets result.txt)
(deps foo.exe (glob_files *.txt))
(action (run %{deps})))

Here is another example:

(rule
(target foo.exe)
(deps foo.c)
(action (run %{cc} -o %{target} %{deps} -lfoolib)))

3.15 Dependency Specification

Dependencies in dune files can be specified using one of the following:

• (:name <dependencies>) will bind the list of dependencies to the name variable. This variable will be avail-
able as %{name} in actions.

• (file <filename>), or simply <filename>, depend on this file.

• (alias <alias-name>) depends on the construction of this alias. For instance: (alias src/runtest).

• (alias_rec <alias-name>) depends on the construction of this alias recursively in all children directories
wherever it is defined. For instance: (alias_rec src/runtest) might depend on (alias src/runtest),
(alias src/foo/bar/runtest), etc.

• (glob_files <glob>) depends on all files matched by <glob>. See the glob for details.

• (glob_files_rec <glob>) is the recursive version of (glob_files <glob>). See the glob for details.

• (source_tree <dir>) depends on all source files in the subtree with root <dir>.

• (universe) depends on everything in the universe. This is for cases where dependencies are too hard to specify.
Note that Dune will not be able to cache the result of actions that depend on the universe. In any case, this is only
for dependencies in the installed world. You must still specify all dependencies that come from the workspace.

• (package <pkg>) depends on all files installed by <package>, as well as on the transitive package dependen-
cies of <package>. This can be used to test a command against the files that will be installed.

• (env_var <var>) depends on the value of the environment variable <var>. If this variable becomes set, be-
comes unset, or changes value, the target will be rebuilt.

• (sandbox <config>) requires a particular sandboxing configuration. <config> can be one (or many) of:

– always: the action requires a clean environment

– none: the action must run in the build directory

– preserve_file_kind: the action needs the files it reads to look like normal files (so Dune won’t use
symlinks for sandboxing)

• (include <file>) read the s-expression in <file> and interpret it as additional dependencies. The s-
expression is expected to be a list of the same constructs enumerated here.

3.15. Dependency Specification 121

Dune Documentation

In all these cases, the argument supports Variables.

3.15.1 Named Dependencies

Dune allows a user to organize dependency lists by naming them. The user is allowed to assign a group of dependencies
a name that can later be referred to in actions (like the %{deps}, %{target}, and %{targets} built in variables).

One instance where this is useful is for naming globs. Here’s an example of an imaginary bundle command:

(rule
(target archive.tar)
(deps
index.html
(:css (glob_files *.css))
(:js foo.js bar.js)
(:img (glob_files *.png) (glob_files *.jpg)))

(action
(run %{bin:bundle} index.html -css %{css} -js %{js} -img %{img} -o %{target})))

Note that a named dependency list can also include unnamed dependencies (like index.html in the example above).
Also, such user defined names will shadow build in variables, so (:workspace_root x) will shadow the built-in
%{workspace_root} variable.

3.15.2 Glob

You can use globs to declare dependencies on a set of files. Note that globs will match files that exist in the source tree
as well as buildable targets, so for instance you can depend on *.cmi.

Dune supports globbing files in a single directory via (glob_files ...) and, starting with Dune 3.0, in all subdi-
rectories recursively via (glob_files_rec ...). The glob is interpreted as follows:

• anything before the last / is taken as a literal path

• anything after the last /, or everything if the glob contains no /, is interpreted using the glob syntax

Absolute paths are permitted in the (glob_files ...) term only. It’s an error to pass an absolute path (i.e., a path
beginning with a /) to (glob_files_rec ...)`.

The glob syntax is interpreted as follows:

• \<char> matches exactly <char>, even if it’s a special character (*, ?, . . .).

• * matches any sequence of characters, except if it comes first, in which case it matches any character that is not
. followed by anything.

• ** matches any character that is not . followed by anything, except if it comes first, in which case it matches
anything.

• ? matches any single character.

• [<set>] matches any character that is part of <set>.

• [!<set>] matches any character that is not part of <set>.

• {<glob1>,<glob2>,...,<globn>} matches any string that is matched by one of <glob1>, <glob2>, etc.

122 Chapter 3. Reference Manual

Dune Documentation

Table 5: Glob syntax examples
Syntax Files matched Files not matched
x x y
* * x
file*.txt file1.txt, file2.txt f.txt
*.txt f.txt .hidden.txt
a** aml a.ml
** a/b, a.b (none)
a?.txt a1.txt, a2.txt b1.txt, a10.txt
f[xyz].txt fx.txt, fy.txt, fz.txt f2.txt, f.txt
f[!xyz].txt f2.txt, fa.txt fx.txt, f.txt
a.{ml,mli} a.ml, a.mli a.txt, b.ml
../a.{ml,mli} ../a.ml, ../a.mli a.ml

3.16 OCaml Flags

In library, executable, executables, and env stanzas, you can specify OCaml compilation flags using the fol-
lowing fields:

• (flags <flags>) to specify flags passed to both ocamlc and ocamlopt

• (ocamlc_flags <flags>) to specify flags passed to ocamlc only

• (ocamlopt_flags <flags>) to specify flags passed to ocamlopt only

For all these fields, <flags> is specified in the Ordered Set Language. These fields all support (:include ...)
forms.

The default value for (flags ...) is taken from the environment, as a result it’s recommended to write (flags ...)
fields as follows:

(flags (:standard <my options>))

3.17 Sandboxing

The user actions that run external commands (run, bash, system) are opaque to Dune, so Dune has to rely on manual
specification of dependencies and targets. One problem with manual specification is that it’s error-prone. It’s often hard
to know in advance what files the command will read, and knowing a correct set of dependencies is very important for
build reproducibility and incremental build correctness.

To help with this problem Dune supports sandboxing. An idealized view of sandboxing is that it runs the action in an
environment where it can’t access anything except for its declared dependencies.

In practice, we have to make compromises and have some trade-offs between simplicity, information leakage, perfor-
mance, and portability.

The way sandboxing is currently implemented is that for each sandboxed action we build a separate directory tree (sand-
box directory) that mirrors the build directory, filtering it to only contain the files that were declared as dependencies.
We run the action in that directory, and then we copy the targets back to the build directory.

You can configure Dune to use sandboxing modes symlink, hardlink, or copy, which determine how the individual
files are populated (they will be symlinked, hardlinked, or copied into the sandbox directory).

This approach is very simple and portable, but that comes with certain limitations:

3.16. OCaml Flags 123

Dune Documentation

• The actions in the sandbox can use absolute paths to refer to anywhere outside the sandbox. This means that only
dependencies on relative paths in the build tree can be enforced/detected by sandboxing.

• The sandboxed actions still run with full permissions of Dune itself, so sandboxing is not a security feature. It
won’t prevent network access either.

• We don’t erase the environment variables of the sandboxed commands. This is something we want to change.

• Performance impact is usually small, but it can get noticeable for fast actions with very large sets of dependencies.

3.17.1 Per-Action Sandboxing Configuration

Some actions may rely on sandboxing to work correctly. For example, an action may need the input directory to contain
nothing except the input files, or the action might create temporary files that break other build actions.

Some other actions may refuse to work with Sandboxing. For example, if they rely on absolute path to the build
directory staying fixed, or if they deliberately use some files without declaring dependencies (this is usually a very bad
idea, by the way).

Generally it’s better to improve the action so it works with or without sandboxing (especially with), but sometimes you
just can’t do that.

Things like this can be described using the “sandbox” field in the dependency specification language (see Dependency
Specification).

3.17.2 Global Sandboxing Configuration

Dune always respects per-action sandboxing specification. You can configure it globally to prefer a certain sandboxing
mode if the action allows it.

This is controlled by:

• dune --sandbox <...> CLI flag (see man dune-build)

• DUNE_SANDBOX environment (see man dune-build)

• (sandboxing_preference ..) field in the configuration file (see man dune-config)

3.18 Locks

Given two rules that are independent, Dune will assume that their associated actions can be run concurrently. Two rules
are considered independent if neither of them depend on the other, either directly or through a chain of dependencies.
This basic assumption allows Dune to parallelize the build.

However, it is sometimes the case that two independent rules cannot be executed concurrently. For instance, this can
happen for more complicated tests. In order to prevent Dune from running the actions at the same time, you can specify
that both actions take the same lock:

(rule
(alias runtest)
(deps foo)
(locks m)
(action (run test.exe %{deps})))

(alias
(continues on next page)

124 Chapter 3. Reference Manual

Dune Documentation

(continued from previous page)

(rule runtest)
(deps bar)
(locks m)
(action (run test.exe %{deps})))

Dune will make sure that the executions of test.exe foo and test.exe bar are serialized.

Although they don’t live in the filesystem, lock names are interpreted as file names. So for instance, (with-lock m
...) in src/dune and (with-lock ../src/m) in test/dune refer to the same lock.

Note also that locks are per build context. So if your workspace has two build contexts setup, the same rule might still
be executed concurrently between the two build contexts. If you want a lock that is global to all build contexts, simply
use an absolute filename:

(rule
(alias runtest)
(deps foo)
(locks /tcp-port/1042)
(action (run test.exe %{deps})))

3.19 Diffing and Promotion

(diff <file1> <file2>) is very similar to (run diff <file1> <file2>). In particular it behaves in the same
way:

• When <file1> and <file2> are equal, it does nothing.

• When they are not, the differences are shown and the action fails.

However, it is different for the following reason:

• The exact command used for diff files can be configured via the --diff-command command line argument.
Note that it’s only called when the files are not byte equals

• By default, it will use patdiff if it is installed. patdiff is a better diffing program. You can install it via opam
with:

$ opam install patdiff

• On Windows, both (diff a b) and (diff? a b) normalize end-of-line characters before comparing the files.

• Since (diff a b) is a built-in action, Dune knows that a and b are needed, so you don’t need to specify them
explicitly as dependencies.

• You can use (diff? a b) after a command that might or might not produce b, for cases where commands
optionally produce a corrected file

• If <file1> doesn’t exist, it will compare with the empty file.

• It allows promotion. See below.

Note that (cmp a b) does no end-of-line normalization and doesn’t print a diff when the files differ. cmp is meant to
be used with binary files.

3.19. Diffing and Promotion 125

Dune Documentation

3.19.1 Promotion

Whenever an action (diff <file1> <file2>) or (diff? <file1> <file2>) fails because the two files are dif-
ferent, Dune allows you to promote <file2> as <file1> if <file1> is a source file and <file2> is a generated
file.

More precisely, let’s consider the following Dune file:

(rule
(with-stdout-to data.out (run ./test.exe)))

(rule
(alias runtest)
(action (diff data.expected data.out)))

Where data.expected is a file committed in the source repository. You can use the following workflow to update
your test:

• Update the code of your test.

• Run dune runtest. The diff action will fail and a diff will be printed.

• Check the diff to make sure it’s what you expect. This diff can be displayed again by running dune promotion
diff.

• Run dune promote. This will copy the generated data.out file to data.expected directly in the source tree.

You can also use dune runtest --auto-promote, which will automatically do the promotion.

3.20 Package Specification

Installation is the process of copying freshly built libraries, binaries, and other files from the build directory to the
system. Dune offers two ways of doing this: via opam or directly via the install command. In particular, the
installation model implemented by Dune was copied from opam. Opam is the standard OCaml package manager.

In both cases, Dune only know how to install whole packages. A package being a collection of executables, libraries,
and other files. In this section, we’ll describe how to define a package, how to “attach” various elements to it, and how
to proceed with installing it on the system.

3.20.1 Declaring a Package

To declare a package, simply add a package stanza to your dune-project file:

(package
(name mypackage)
(synopsis "My first Dune package!")
(description "\| This is my first attempt at creating

"\| a project with Dune.
))

Once you have done this, Dune will know about the package named mypackage and you will be able to attach various
elements to it. The package stanza accepts more fields, such as dependencies.

Note that package names are in a global namespace, so the name you choose must be universally unique. In particular,
package managers never allow users to release two packages with the same name.

126 Chapter 3. Reference Manual

Dune Documentation

In older projects using Dune, packages were defined by manually writing a file called <package-name>.opam at the
root of the project. However, it’s not recommended to use this method in new projects, as we expect to deprecate it in
the future. The right way to define a package is with a package stanza in the dune-project file.

See How to Generate Opam Files from dune-project for instructions on configuring Dune to automatically generate
.opam files based on the package stanzas.

3.20.2 Attaching Elements to a Package

Attaching an element to a package means declaring to Dune that this element is part of the said package. The method
to attach an element to a package depends on the kind of the element. In this subsection, we will go through the various
kinds of elements and describe how to attach each of them to a package.

In the rest of this section, <prefix> refers to the directory in which the user chooses to install packages. When installing
via opam, it’s opam that sets this directory. When calling dune install, the installation directory is either guessed
or can be manually specified by the user. Defaults directories which replace guessing can be set during the compilation
of dune.

3.20.3 Sites of a Package

When packages need additional resources outside their binary, their location could be hard to find. Moreover, some
packages could add resources to another package, e.g., in the case of plugins. These locations are called sites in Dune.
One package can define them. During execution, one site corresponds to a list of directories. They are like layers, and
the first directories have a higher priority. Examples and precisions are available at How to Load Additional Files at
Runtime.

Libraries

In order to attach a library to a package, merely add a public_name field to your library. This is the name that external
users of your libraries must use in order to refer to it. Dune requires that a library’s public name is either the name of
the package it is part of or start with the package name followed by a dot character.

For instance:

(library
(name mylib)
(public_name mypackage.mylib))

After you have added a public name to a library, Dune will know to install it as part of the package it is attached to.
Dune installs the library files in a directory <prefix>/lib/<package-name>.

If the library name contains dots, the full directory in which the library files are installed is lib/<comp1>/<comp2/
.../<compn>, where <comp1>, <comp2>, . . . <compn> are the dot-separated component of the public library name.
By definition, <comp1> is always the package name.

3.20. Package Specification 127

Dune Documentation

Executables

Similar to libraries, to attach an executable to a package simply add a public_name field to your executable stanza
or a public_names field for executables stanzas. Designate this name to match the available executables through
the installed PATH (i.e., the name users must type in their shell to execute the program), because Dune cannot guess
an executable’s relevant package from its public name. It’s also necessary to add a package field unless the project
contains a single package, in which case the executable will be attached to this package.

For instance:

(executable
(name main)
(public_name myprog)
(package mypackage))

Once mypackage is installed on the system, the user will be able to type the following in their shell:

$ myprog

to execute the program.

Other Files

For all other kinds of elements, you must attach them manually via an install stanza.

3.21 Aliases

Aliases are build targets that do not correspond to specific files. For example, the runtest alias corresponds to running
tests.

3.21.1 Model and Syntax

Dependencies and actions can be attached to an alias. When this alias is requested to be built, these dependencies are
built and these actions are executed. Aliases are attached to specific directories.

In commands such as dune build, the syntax to refer to the x alias is @x, for example dune build @x. This is why
it is common to refer to it as “the @x alias”, or “attaching a rule to @x”.

Building @x will build x in all subdirectories of the current directory. This is the most common case, but it is possible
to restrict this using different syntaxes:

• @sub/dir/x will build x in sub/dir and its subdirectories.

• @@x will build x in the current directory only.

• @@sub/dir/x will build x in sub/dir only.

If dir is the directory of a build context, it restricts the alias to this context.

To summarize, the syntax is:

• @ (recursive) or @@ (non-recursive): determine if subdirectories are included

• optional build context root: restrict to a particular build context

• optional directory: only consider this subdirectory

128 Chapter 3. Reference Manual

Dune Documentation

• alias name

Examples:

• dune build @_build/foo/runtest only runs the tests for the foo build context

• dune build @runtest will run the tests for all build contexts

3.21.2 User-Defined Aliases

It is possible to use any name for alias names; it will then be available on the command line. For example, if a Dune
file contains the following, then dune build @deploy will execute that command.

(rule
(alias deploy)
(action ./run-deployer.exe))

3.21.3 Built-In Aliases

Some aliases are defined and managed by Dune itself.

@all

This alias corresponds to every known file target in a directory.

@check

This alias corresponds to the set of targets necessary for development tools to work correctly. For example, it will build
*.cmi, *.cmt, and *.cmti files so that Merlin and ocaml-lsp-server can be used in the project. It is also useful in
the development loop because it will catch compilation errors without executing expensive operations such as linking
executables.

@default

This alias corresponds to the default argument for dune build: dune build is equivalent to dune build
@@default. Similarly, dune build dir is equivalent to dune build @@dir/default.

When a directory doesn’t explicitly define what the default alias means via an alias stanza, the following implicit
definition is assumed:

(alias
(name default)
(deps (alias_rec all)))

But if such a stanza is present in the dune file in a directory, it will be used instead. For example, if the following is
present in tests/dune, dune build tests will run tests there:

(alias
(name default)
(deps (alias_rec runtest)))

3.21. Aliases 129

Dune Documentation

@doc

This alias builds documentation for public libraries as HTML pages.

@doc-json

This alias builds documentation for public libraries as JSON files. These are produced by odoc’s option --as-json
and can be consumed by external tools.

@doc-private

This alias builds documentation for all libraries, both public & private.

@fmt

This alias is used by formatting rules: when it is built, code formatters will be executed (using promotion).

dune fmt is a shortcut for dune build @fmt --auto-promote.

It is possible to build on top of this convention. If some actions are manually attached to the fmt alias, they will be
executed by dune fmt.

Example:

(rule
(with-stdout-to
data.json.formatted
(run jq . %{dep:data.json})))

(rule
(alias fmt)
(action
(diff data.json data.json.formatted)))

@install

This alias depends on the *.install files used by the opam integration. In turn, these depend on installable files.

@lint

This alias runs linting tools.

130 Chapter 3. Reference Manual

Dune Documentation

@runtest

Actions that run tests are attached to this alias. For example this convention is used by the (test) stanza.

dune runtest is a shortcut for dune build @runtest.

3.22 Foreign Sources, Archives, and Objects

Dune provides basic support for including foreign source files as well as archives of foreign object files into OCaml
projects via the foreign_stubs and foreign_archives fields. Individual object files can also be included via the
extra_objects field.

3.22.1 Foreign Stubs

You can specify foreign sources using the foreign_stubs field of the library and executable stanzas. For exam-
ple:

(library
(name lib)
(foreign_stubs (language c) (names src1 src2))
(foreign_stubs (language cxx) (names src3) (flags -O2)))

Here we declare an OCaml library lib, which contains two C sources src1 and src2, and one C++ source, src3,
which need to be compiled with -O2. These source files will be compiled and packaged with the library, along with the
link-time flags to be used when linking the final executables. When matching names to source files, Dune treats *.c
files as C sources, and *.cpp, *.cc, and *.cxx files as C++ sources.

Here is a complete list of supported subfields:

• language specifies the source language, where c means C and cxx means C++. In the future, more languages
may be supported.

• names specifies the names of source files. When specifying a source file, omit the extension and any relative
parts of the path; Dune will scan all library directories to find all matching files and raise an error if multiple
source files map to the same object name. If you need to have multiple object files with the same name, you
can package them into different Foreign Archives via the foreign_archives field. This field uses the Ordered
Set Language where the :standard value corresponds to the set of names of all source files whose extensions
match the specified language.

• flags are passed when compiling source files. This field is specified using the Ordered Set Language, where
the :standard value comes from the environment settings c_flags and cxx_flags, respectively. Note that,
for C stubs, Dune unconditionally adds the flags present in the OCaml config fields ocamlc_cflags and
ocamlc_cppflags to the compiler command line. This behavior can be disabled since Dune 2.8 via the
dune-project option use_standard_c_and_cxx_flags.

• include_dirs are tracked as dependencies and passed to the compiler via the -I flag. You can use Variables
in this field and refer to a library source directory using the (lib library-name) syntax. Additionally, the
syntax (include filename) can be used to specify a file containing additional arguments to (include_dirs
...). The named file can either contain a single path to be added to this list of include directories, or an S-
expression listing additional (include_dirs ...) arguments (the (lib ...) and (include ...) syntax is
also supported in files included in this way). For example, (include_dirs dir1 (lib lib1) (lib lib2)
(include inc1) dir2) specifies the directory dir1, the source directories of lib1, and lib2, the list of
directories contained in the file inc1, and the directory dir2, in this order. Some examples of possible contents
of the file inc1 are:

3.22. Foreign Sources, Archives, and Objects 131

Dune Documentation

– dir3 which would add dir3 to the list of include directories

– ((lib lib3) dir4 (include inc2)) which would add the source directory of the library lib3, the
directory dir4, and the result of recursively including the contents of the file inc2. The contents of included
directories are tracked recursively, e.g., if you use (include_dir dir) and have headers dir/base.h
and dir/lib/lib.h, they both will be tracked as dependencies.

– extra_deps specifies any other dependencies that should be tracked. This is useful when dealing with
#include statements that escape into a parent directory like #include "../a.h".

Mode-Dependent Stubs

Since Dune 3.5, it is possible to use different foreign stubs when building in native or byte mode. This feature needs to
be activated by adding (using mode_specific_stubs 0.1) in the dune-project file.

Then it is allowed to use the mode field when describing foreign_stubs. If the same stub is defined twice, Dune will
automatically chose the correct one. This allows the use of different sets of flags or even different source files from
which the stubs are built.

(executable
(name main)
(modes native byte_complete)
(foreign_stubs
(language c)
(mode byte)
(names c_stubs))

(foreign_stubs
(language c)
(mode native)
(flags :standard -DNATIVE_CODE) ; A flag specific to native builds
(names c_stubs))) ; This could be the name of an implementation

; specific to native builds

Note that, as of version 0.1 of this extension, this mechanism does not work for foreign_archives.

3.22.2 Foreign Archives

You can also specify archives of separately compiled foreign object files that need to be packaged with an OCaml library
or linked into an OCaml executable. To do that, use the foreign_archives field of the corresponding library or
executable stanza. For example:

(library
(name lib)
(foreign_stubs (language c) (names src1 src2))
(foreign_stubs (language cxx) (names src3) (flags -O2))
(foreign_archives arch1 some/dir/arch2))

Here, in addition to Foreign Stubs, we also specify foreign archives arch1 and arch2, where the latter is stored in a
subdirectory some/dir.

You can build a foreign archive manually, e.g., using a custom rule as described in Foreign Build Sandboxing, or ask
Dune to build it via the foreign_library stanza:

132 Chapter 3. Reference Manual

Dune Documentation

(foreign_library
(archive_name arch1)
(language c)
(enabled_if true)
(names src4 src5)
(include_dir headers))

This asks Dune to compile C source files src4 and src5 with headers tracked in the headers directory and put the
resulting object files into an archive arch1, whose full name is typically libarch1.a for static linking and dllarch1.
so for dynamic linking.

The foreign_library stanza supports all Foreign Stubs fields. The archive_name field specifies the archive’s name.
You can refer to the same archive name from multiple OCaml libraries and executables, so a foreign archive is a bit like
a foreign library, hence the name of the stanza. The enabled_if field has the same meaning as in the library stanza.

Foreign archives are particularly useful when embedding a library written in a foreign language and/or built with another
build system. See Foreign Build Sandboxing for more details.

3.22.3 Extra Objects

It’s possible to specify native object files to be packaged with OCaml libraries or linked into OCaml executables. Do
this by using the extra_objects field of the library or executable stanzas. For example:

(executable
(public_name main)
(extra_objects foo bar))

(rule
(targets foo.o bar.o)
(deps foo.c bar.c)
(action (run ocamlopt %{deps})))

This example builds an executable which is linked against a pair of native object files, foo.o and bar.o. The
extra_objects field takes a list of object names, which correspond to the object file names with their path and
extension omitted.

In this example, the sources corresponding to the objects (foo.c and bar.c) are assumed to be present in the same
directory as the OCaml source code, and a custom rule is used to compile the C source code into object files using
ocamlopt. This is not necessary; one can instead compile foreign object files manually and place them next to the
OCaml source code.

3.22.4 Flags

Depending on the use_standard_c_and_cxx_flags option, the base :standard set of flags for C will contain only
ocamlc_cflags or both ocamlc_cflags and ocamlc_cppflags.

There are multiple levels where one can declare custom flags (using the Ordered Set Language), and each level inherits
the flags of the previous one in its :standard set:

• In the global env definition of a dune-workspace file

• In the per-context env definitions in a dune-workspace file

• In the env definition of a dune file

• In a foreign_ field of an executable or a library

3.22. Foreign Sources, Archives, and Objects 133

Dune Documentation

The %{cc} variable will contain the flags from the first three levels only.

3.23 Command Line Interface

This is a short overview of the commands available in Dune. Reference documentation for each command is available
through dune COMMAND --help.

dune build

Build the given targets, or the default ones.

dune cache

Manage the shared cache of build artifacts.

dune cache size

Query the size of the Dune cache.

dune cache trim

Trim the Dune cache.

dune clean

Clean the project.

dune coq

Command group related to Coq.

dune coq top

Execute a Coq toplevel with the local configuration.

dune describe

Describe the workspace.

dune diagnostics

Fetch and return errors from the current build.

dune exec

Execute a command in a similar environment as if installation was performed.

dune fmt

Format source code.

dune format-dune-file

Format dune files.

dune help

Additional Dune help.

dune init

Command group for initializing Dune components.

dune init executable

Initialize a binary executable.

dune init library

Initialize an OCaml library.

134 Chapter 3. Reference Manual

Dune Documentation

dune init project

Initialize a whole OCaml project.

dune init test

Initialize a test harness.

dune install

Install packages defined in workspace.

dune installed-libraries

Print out libraries installed on the system.

dune ocaml

Command group related to OCaml.

dune ocaml dump-dot-merlin

Print Merlin configuration.

dune ocaml merlin

Command group related to Merlin.

dune ocaml merlin dump-config

Prints the entire content of the Merlin configuration for the given folder in a user friendly form.

dune ocaml merlin start-session

Start a Merlin configuration server.

dune ocaml ocaml-merlin

Start a Merlin configuration server.

dune ocaml top

Print a list of toplevel directives for including directories and loading .cma files.

dune ocaml top-module

Print a list of toplevel directives for loading a module into the toplevel.

dune ocaml utop

Load library in UTop.

dune ocaml-merlin

Start a Merlin configuration server.

dune printenv

Print the environment of a directory.

dune promotion

Control how changes are propagated back to source code.

dune promotion apply

Promote files from the last run.

dune promotion diff

List promotions to be applied.

dune promote

A command alias for dune promotion apply.

3.23. Command Line Interface 135

Dune Documentation

dune rpc

Dune’s RPC mechanism. Experimental.

dune rules

Dump rules.

dune runtest

Run tests.

dune test

A command alias for dune runtest.

dune shutdown

Cancel and shutdown any builds in the current workspace.

dune subst

Substitute watermarks in source files.

dune top

Print a list of toplevel directives for including directories and loading .cma files.

dune uninstall

Uninstall packages defined in the workspace.

dune upgrade

Upgrade projects across major Dune versions.

dune utop

Load library in UTop.

3.24 Dune Libraries

3.24.1 Configurator

Configurator is a small library designed to query features available on the system in order to generate configuration for
Dune builds. Such generated configuration is usually in the form of command line flags, generated headers, and stubs,
but there are no limitations on this.

Configurator allows you to query for the following features:

• Variables defined in ocamlc -config,

• pkg-config flags for packages,

• Test features by compiling C code,

• Extract compile time information such as #define variables.

Configurator is designed to be cross-compilation friendly and avoids _running_ any compiled code to extract any of
the information above.

Configurator started as an independent library, but now lives in dune. It is released as the package
dune-configurator.

136 Chapter 3. Reference Manual

https://www.freedesktop.org/wiki/Software/pkg-config/
https://github.com/janestreet/configurator

Dune Documentation

Usage

We’ll describe configurator with a simple example. Everything else can be easily learned by studying configurator’s
API.

To use Configurator, write an executable that will query the system using Configurator’s API and output a set of targets
reflecting the results. For example:

module C = Configurator.V1

let clock_gettime_code = {|
#include <time.h>

int main()
{
struct timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
return 0;

}
|}

let () =
C.main ~name:"foo" (fun c ->
let has_clock_gettime =
C.c_test c clock_gettime_code ~link_flags:["-lrt"] in

C.C_define.gen_header_file c ~fname:"config.h"
["HAS_CLOCK_GETTIME", Switch has_clock_gettime]);

Usually, the module above would be named discover.ml. The next step is to invoke it as an executable and tell Dune
about the targets that it produces:

(executable
(name discover)
(libraries dune-configurator))

(rule
(targets config.h)
(action (run ./discover.exe)))

Another common pattern is to produce a flags file with Configurator and then use this flag file using :include:

(library
(name mylib)
(foreign_stubs (language c) (names foo))
(c_library_flags (:include (flags.sexp))))

For this, generate the list of flags for your library (for example, using Configurator.V1.Pkg_config), and then write
them to a file: in the above example, flags.sexp with Configurator.V1.write_flags "flags.sexp" flags.

3.24. Dune Libraries 137

https://github.com/ocaml/dune/blob/master/otherlibs/configurator/src/v1.mli
https://github.com/ocaml/dune/blob/master/otherlibs/configurator/src/v1.mli

Dune Documentation

Upgrading From the Old Configurator

The old Configurator is the independent Configurator opam package. It’s now deprecated, and users are encouraged to
migrate to Dune’s own Configurator. The advantage of the transition include:

• No extra dependencies,

• No need to manually pass -ocamlc flag,

• New Configurator is cross-compilation compatible.

The following steps must be taken to transition from the old Configurator:

• Mentions of the configurator opam package should be replaced with dune-configurator.

• The library name configurator should be changed dune-configurator.

• The -ocamlc flag in rules that runs Configurator scripts should be removed. This information is now passed
automatically by Dune.

• The new Configurator API is versioned explicitly. The version that’s compatible with old Configurator is under
the V1 module. Hence, to transition one’s code, it’s enough to add this module alias:

module Configurator = Configurator.V1

3.24.2 dune-build-info Library

Dune can embed build information such as versions in executables via the special dune-build-info library. This
library exposes some information about how the executable was built, such as the version of the project containing
the executable or the list of statically linked libraries with their versions. Printing the version at which the current
executable was built is as simple as:

Printf.printf "version: %s\n"
(match Build_info.V1.version () with
| None -> "n/a"
| Some v -> Build_info.V1.Version.to_string v)

For libraries and executables from development repositories that don’t have version information written directly in the
dune-project file, the version is obtained by querying the version control system. For instance, the following Git
command is used in Git repositories:

$ git describe --always --dirty --abbrev=7

which produces a human readable version string of the form <version>-<commits-since-version>-<hash>[-dirty].

Note that in the case where the version string is obtained from the version control system, the version string will only be
written in the binary once it’s installed or promoted to the source tree. In particular, if you evaluate this expression as
part of your package build, it will return None. This ensures that committing doesn’t hurt your development experience.
Indeed, if Dune stored the version directly inside the freshly built binaries, then every time you commit your code, the
version would change and Dune would need to rebuild all the binaries and everything that depends on them, such as
tests. Instead, Dune leaves a placeholder inside the binary and fills it during installation or promotion.

138 Chapter 3. Reference Manual

https://github.com/janestreet/configurator

Dune Documentation

3.24.3 (Experimental) Dune Action Plugin

This library is experimental and no backwards compatibility is implied. Use at your own risk.

Dune-action-plugin provides a monadic interface to express program dependencies directly inside the source code.
Programs using this feature should be declared using dynamic-run instead of usual run.

3.25 Dune Cache

Dune implements a cache of build results that is shared across different workspaces. Before executing a build rule,
Dune looks it up in the shared cache, and if it finds a matching entry, Dune skips the rule’s execution and restores the
results in the current build directory. This can greatly speed up builds when different workspaces share code, as well
as when switching branches or simply undoing some changes within the same workspace.

3.25.1 Configuration

For now, Dune cache is an opt-in feature. There are three ways to enable it. Choose the one that is more convenient for
you:

• Add (cache enabled) to your Dune configuration file (~/.config/dune/config by default).

• Set the environment variable DUNE_CACHE to enabled

• Run Dune with the --cache=enabled flag.

By default, Dune stores the cache in your XDG_CACHE_HOME directory on *nix systems and %LOCALAPPDATA%\
Microsoft\Windows\Temporary Internet Files\dune on Windows. You can change the default location by
setting the environment variable DUNE_CACHE_ROOT.

3.25.2 Cache Storage Mode

Dune supports two modes of storing and restoring cache entries: hardlink and copy. If your file system supports hard
links, we recommend that you use the hardlink mode, which is generally more efficient and reliable.

The hardlink Mode

By default, Dune uses hard links when storing and restoring cache entries. This is fast and has zero disk space overhead
for files that still live in a build directory. There are two disadvantages of this mode:

• The cache storage must be on the same partition as the build tree.

• A cache entry can be corrupted by modifying the hard link that points to it from the build directory. To reduce
the risk of cache corruption, Dune systematically removes write permissions from all build results. It is worth
noting that modifying files in the build directory is a bad practice anyway.

3.25. Dune Cache 139

Dune Documentation

The copy Mode

If you specify (cache-storage-mode copy) in the configuration file, Dune will copy files to and from the cache
instead of using hard links. This mode is slower and has higher disk space usage. On the positive side, it is more
portable and doesn’t have the disadvantages of the hardlink mode (see above).

You can also set or override the storage mode via the environment variable DUNE_CACHE_STORAGE_MODE and the
command line flag --cache-storage-mode.

3.25.3 Trimming the Cache

Storing all historically produced build results in the cache is infeasible, so you’ll need to occasionally trim the cache.
To do that, run the dune cache trim --size=BYTES command. This will remove the oldest used cache entries to
keep the cache overhead below the specified size. By “overhead” we mean the cache entries whose hard link count is
equal to 1, i.e., which aren’t used in any build directory. Trimming cache entries whose hard link count is greater than
1 would not free any disk space.

Note that previous versions of Dune, cache provided a “cache daemon” that could periodically trim the cache. The
current version doesn’t require an additional daemon process, so this automated trimming functionality is no longer
provided.

3.25.4 Reproducibility

Reproducibility Check

While the main purpose of Dune cache is to speed up build times, it can also be used to check build repro-
ducibility. By specifying (cache-check-probability FLOAT) in the configuration file, or running Dune with the
--cache-check-probability=FLOAT flag, you instruct Dune to re-execute randomly chosen build rules and com-
pare their results with those stored in the cache. If the results differ, the rule is not reproducible, and Dune will print
out a corresponding warning.

Non-Reproducible Rules

Some build rules are inherently not reproducible because they involve running non-deterministic commands that, for
example, depend on the current time or download files from the Internet. To prevent Dune from caching such rules,
mark them as non-reproducible by using (deps (universe)). Please see Dependency Specification.

3.26 Coq

Table of Contents

• Coq

– Introduction

– coq.theory

∗ Coq Dependencies

∗ Coq Documentation

140 Chapter 3. Reference Manual

Dune Documentation

∗ Recursive Qualification of Modules

∗ How Dune Locates and Builds theories

∗ Public and Private Theories

∗ Limitations

∗ Coq Language Version

∗ Coq Language Version 1.0

– coq.extraction

– coq.pp

– Examples of Coq Projects

∗ Simple Project

∗ Multi-Theory Project

∗ Composing Projects

∗ Composing With Installed Theories

∗ Building Documentation

∗ Coq Plugin Project

– Running a Coq Toplevel

∗ Limitations

– Coq-Specific Variables

– Coq Environment Fields

3.26.1 Introduction

Dune can build Coq theories and plugins with additional support for extraction and .mlg file preprocessing.

A Coq theory is a collection of .v files that define Coq modules whose names share a common prefix. The module
names reflect the directory hierarchy.

Coq theories may be defined using coq.theory stanzas, or be auto-detected by Dune by inspecting Coq’s install direc-
tories.

A Coq plugin is an OCaml library that Coq can load dynamically at runtime. Plugins are typically linked with the Coq
OCaml API.

Since Coq 8.16, plugins need to be “public” libraries in Dune’s terminology, that is to say, they must declare a
public_name field.

A Coq project is an informal term for a dune-project containing a collection of Coq theories and plugins.

The .v files of a theory need not be present as source files. They may also be Dune targets of other rules.

To enable Coq support in a Dune project, specify the Coq language version in the dune-project file. For example,
adding

(using coq 0.8)

to a dune-project file enables using the coq.theory stanza and other coq.* stanzas. See the Dune Coq language
section for more details.

3.26. Coq 141

Dune Documentation

3.26.2 coq.theory

The Coq theory stanza is very similar in form to the OCaml library stanza:

(coq.theory
(name <module_prefix>)
(package <package>)
(synopsis <text>)
(modules <ordered_set_lang>)
(plugins <ocaml_plugins>)
(flags <coq_flags>)
(coqdoc_flags <coqdoc_flags>)
(stdlib <stdlib_included>)
(mode <coq_native_mode>)
(theories <coq_theories>))

The stanza builds all the .v files in the given directory and its subdirectories if the include-subdirs stanza is present.

For usage of this stanza, see the Examples of Coq Projects.

The semantics of the fields are:

• <module_prefix> is a dot-separated list of valid Coq module names and determines the module scope under
which the theory is compiled (this corresponds to Coq’s -R option).

For example, if <module_prefix> is foo.Bar, the theory modules are named foo.Bar.module1, foo.Bar.
module2, etc. Note that modules in the same theory don’t see the foo.Bar prefix in the same way that OCaml
wrapped libraries do.

For compatibility, Coq lang 1.0 installs a theory named foo.Bar under foo/Bar. Also note that Coq supports
composing a module path from different theories, thus you can name a theory foo.Bar and a second one foo.
Baz, and Dune composes these properly. See an example of a multi-theory Coq project for this.

• The modules field allows one to constrain the set of modules included in the theory, similar to its OCaml coun-
terpart. Modules are specified in Coq notation. That is to say, A/b.v is written A.b in this field.

• If the package field is present, Dune generates install rules for the .vo files of the theory. pkg_name must be a
valid package name.

Note that Coq lang 1.0 will use the Coq legacy install setup, where all packages share a common root namespace
and install directory, lib/coq/user-contrib/<module_prefix>, as is customary in the Make-based Coq
package ecosystem.

For compatibility, Dune also installs, under the user-contrib prefix, the .cmxs files that appear in
<ocaml_plugins>. This will be dropped in future versions.

• <coq_flags> are passed to coqc as command-line options. :standard is taken from the value set in the (coq
(flags <flags>)) field in env profile. See env for more information.

• <coqdoc_flags> are extra user-configurable flags passed to coqdoc. The default value for :standard is
--toc. The --html or --latex flags are passed separately depending on which mode is target. See the section
on documentation using coqdoc for more information.

• <stdlib_included> can either be yes or no, currently defaulting to yes. When set to no, Coq’s standard
library won’t be visible from this theory, which means the Coq prefix won’t be bound, and Coq.Init.Prelude
won’t be imported by default.

• If the plugins field is present, Dune will pass the corresponding flags to Coq so that coqdep and coqc can
find the corresponding OCaml libraries declared in <ocaml_plugins>. This allows a Coq theory to depend on
OCaml plugins. Starting with (lang coq 0.6), <ocaml_plugins> must contain public library names.

142 Chapter 3. Reference Manual

Dune Documentation

• Your Coq theory can depend on other theories — globally installed or defined in the current workspace — by
adding the theories names to the <coq_theories> field. Then, Dune will ensure that the depended theories are
present and correctly registered with Coq.

See Locating Theories for more information on how Coq theories are located by Dune.

• If Coq has been configured with -native-compiler yes or ondemand, Dune will always build the cmxs files
together with the vo files. This only works on Coq versions after 8.13 in which the option was introduced.

You may override this by specifying (mode native) or (mode vo).

Before Coq lang 0.7, the native mode had to be manually specified, and Coq did not use Coq’s configuration

Versions of Dune < 3.7.0 would disable native compilation if the dev profile was selected.

• If the (mode vos) field is present, only Coq compiled interface files .vos will be produced for the theory. This
is mainly useful in conjunction with dune coq top, since this makes the compilation of dependencies much
faster, at the cost of skipping proof checking. (Appeared in Coq lang 0.8).

Coq Dependencies

When a Coq file a.v depends on another file b.v, Dune is able to build them in the correct order, even if they are in
separate theories. Under the hood, Dune asks coqdep how to resolve these dependencies, which is why it is called once
per theory.

Coq Documentation

Given a coq.theory stanza with name A, Dune will produce two directory targets, A.html/ and A.tex/. HTML or
LaTeX documentation for a Coq theory may then be built by running dune build A.html or dune build A.tex,
respectively (if the dune file for the theory is the current directory).

There are also two aliases @doc and @doc-latex that will respectively build the HTML or LaTeX documentation
when called. These will determine whether or not Dune passes a --html or --latex flag to coqdoc.

Further flags can also be configured using the (coqdoc_flags) field in the coq.theory stanza. These will be
passed to coqdoc and the default value is :standard which is --toc. Extra flags can therefore be passed by writing
(coqdoc_flags :standard --body-only) for example.

Recursive Qualification of Modules

If you add:

(include_subdirs qualified)

to a dune file, Dune considers all the modules in the directory and its subdirectories, adding a prefix to the module
name in the usual Coq style for subdirectories. For example, file A/b/C.v becomes the module A.b.C.

3.26. Coq 143

Dune Documentation

How Dune Locates and Builds theories

Dune organises it’s knowledge about Coq theories in 3 databases:

• Scope database: A Dune scope is a part of the project sharing a single common dune-project file. In a single
scope, any theory in the database can depend on any other theory in that database as long as their visibilities are
compatible. A public theory for example cannot depend on a private theory.

• Public theory database: The set of all scopes that Dune knows about is termed a workspace. Only public theories
coming from scopes are added to the database of all public theories in the current workspace.

The public theory database allows theories to depend on theories that are in a different scope. Thus, you can
depend on theories belonging to another dune-project as long as they share a common scope under another
dune-project file or a dune-workspace file.

Doing so is usually as simple as placing a Coq project within the scope of another. This process is termed
composition. See the interproject composition example.

Inter-project composition allows Dune to compute module dependencies using a fine granularity. In practice,
this means that Dune will only build the parts of a depended theory that are needed by your project.

Inter-project composition has been available since Coq lang 0.4.

• Installed theory database: If a theory cannot be found in the list of workspace-public theories, Dune will try to
locate the theory in the list of installed locations Coq knows about.

This list is built using the output of coqc --config in order to infer the COQLIB and COQPATH environment
variables. Each path in COQPATH and COQLIB/user-contrib is used to build the database of installed theories.

Note that, for backwards compatibility purposes, installed theories do not have to be installed or built using
Dune. Dune tries to infer the name of the theory from the installed layout. This is ambiguous in the sense that a
file-system layout of a/b will provide theory names a and a.b.

Resolving this ambiguity in a backwards-compatible way is not possible, but future versions of Dune Coq support
will provide a way to improve this.

Coq’s standard library gets a special status in Dune. The location at COQLIB/theories will be assigned a entry
with the theory name Coq, and added to the dependency list implicitly. This can be disabled with the (stdlib
no) field in the coq.theory stanza.

The Coq prefix can then be used to depend on Coq’s stdlib in a regular, qualified way. We recommend setting
(stdlib no) and adding (theories Coq) explicitly.

Composition with installed theories has been available since Coq lang 0.8.

The databases above are used to locate a theory dependencies. Note that Dune has a complete global view of every file
involved in the compilation of your theory and will therefore rebuild if any changes are detected.

Public and Private Theories

A public theory is a coq.theory stanza that is visible outside the scope of a dune-project file.

A private theory is a coq.theory stanza that is limited to the scope of the dune-project file it is in.

A private theory may depend on both private and public theories; however, a public theory may only depend on other
public theories.

By default, all coq.theory stanzas are considered private by Dune. In order to make a private theory into a public theory,
the (package) field must be specified.

144 Chapter 3. Reference Manual

Dune Documentation

(coq.theory
(name private_theory))

(coq.theory
(name private_theory)
(package coq-public-theory))

Limitations

• .v files always depend on the native OCaml version of the Coq binary and its plugins, unless the natively compiled
versions are missing.

• A foo.mlpack file must the present in directories of locally defined plugins for things to work. coqdep, which
is used internally by Dune, will recognize a plugin by looking at the existence of an .mlpack file, as it cannot
access (for now) Dune’s library database. This is a limitation of coqdep. See the example plugin or the this
template.

This limitation will be lifted soon, as newer versions of coqdep can use findlib’s database to check the existence
of OCaml libraries.

Coq Language Version

The Coq lang can be modified by adding the following to a dune-project file:

(using coq 0.8)

The supported Coq language versions (not the version of Coq) are:

• 0.8: Support for composition with installed Coq theories; support for vos builds.

Deprecated experimental Coq language versions are:

• 0.1: Basic Coq theory support.

• 0.2: Support for the theories field and composition of theories in the same scope.

• 0.3: Support for (mode native) requires Coq >= 8.10 (and Dune >= 2.9 for Coq >= 8.14).

• 0.4: Support for interproject composition of theories.

• 0.5: (libraries ...) field deprecated in favor of (plugins ...) field.

• 0.6: Support for (stdlib no).

• 0.7: (mode) is automatically detected from the configuration of Coq and (mode native) is deprecated. The
dev profile also no longer disables native compilation.

3.26. Coq 145

https://github.com/ejgallego/coq-plugin-template
https://github.com/ejgallego/coq-plugin-template

Dune Documentation

Coq Language Version 1.0

Guarantees with respect to stability are not yet provided, but we intend that the (0.8) version of the language becomes
1.0. The 1.0 version of Coq lang will commit to a stable set of functionality. All the features below are expected to
reach 1.0 unchanged or minimally modified.

3.26.3 coq.extraction

Coq may be instructed to extract OCaml sources as part of the compilation process by using the coq.extraction
stanza:

(coq.extraction
(prelude <name>)
(extracted_modules <names>)
<optional-fields>)

• (prelude <name>) refers to the Coq source that contains the extraction commands.

• (extracted_modules <names>) is an exhaustive list of OCaml modules extracted.

• <optional-fields> are flags, stdlib, theories, and plugins. All of these fields have the same meaning
as in the coq.theory stanza.

The extracted sources can then be used in executable or library stanzas as any other sources.

Note that the sources are extracted to the directory where the prelude file lives. Thus the common placement for the
OCaml stanzas is in the same dune file.

Warning: using Coq’s Cd command to work around problems with the output directory is not allowed when using
extraction from Dune. Moreover the Cd command has been deprecated in Coq 8.12.

3.26.4 coq.pp

Authors of Coq plugins often need to write .mlg files to extend the Coq grammar. Such files are preprocessed with the
coqpp binary. To help plugin authors avoid writing boilerplate, we provide a (coq.pp ...) stanza:

(coq.pp
(modules <ordered_set_lang>))

This will run the coqpp binary on all the .mlg files in <ordered_set_lang>.

3.26.5 Examples of Coq Projects

Here we list some examples of some basic Coq project setups in order.

146 Chapter 3. Reference Manual

Dune Documentation

Simple Project

Let us start with a simple project. First, make sure we have a dune-project file with a Coq lang stanza present:

(lang dune 3.15)
(using coq 0.8)

Next we need a dune file with a coq.theory stanza:

(coq.theory
(name myTheory))

Finally, we need a Coq .v file which we name A.v:

(** This is my def *)
Definition mydef := nat.

Now we run dune build. After this is complete, we get the following files:

.
A.v
_build

default
A.glob
A.v
A.vo

log
dune
dune-project

Multi-Theory Project

Here is an example of a more complicated setup:

.
A

AA
aa.v

AB
ab.v

dune
B

b.v
dune

dune-project

Here are the dune files:

; A/dune
(include_subdirs qualified)
(coq.theory
(name A))

(continues on next page)

3.26. Coq 147

Dune Documentation

(continued from previous page)

; B/dune
(coq.theory
(name B)
(theories A))

Notice the theories field in B allows one coq.theory to depend on another. Another thing to note is the inclusion of
the include_subdirs stanza. This allows our theory to have multiple subdirectories.

Here are the contents of the .v files:

(* A/AA/aa.v is empty *)

(* A/AB/ab.v *)
Require Import AA.aa.

(* B/b.v *)
From A Require Import AB.ab.

This causes a dependency chain b.v -> ab.v -> aa.v. Now we might be interested in building theory B, so all we
have to do is run dune build B. Dune will automatically build the theory A since it is a dependency.

Composing Projects

To demonstrate the composition of Coq projects, we can take our previous two examples and put them in project which
has a theory that depends on theories in both projects.

.
CombinedWork

comb.v
dune

DeeperTheory
A

AA
aa.v

AB
ab.v

dune
B

b.v
dune

Deep.opam
dune-project

dune-project
SimpleTheory

A.v
dune
dune-project
Simple.opam

The file comb.v looks like:

148 Chapter 3. Reference Manual

Dune Documentation

(* Files from DeeperTheory *)
From A.AA Require Import aa.
(* In Coq, partial prefixes for theory names are enough *)
From A Require Import ab.
From B Require Import b.

(* Files from SimpleTheory *)
From myTheory Require Import A.

We are referencing Coq modules from all three of our previously defined theories.

Our dune file in CombinedWork looks like:

(coq.theory
(name Combined)
(theories myTheory A B))

As you can see, there are dependencies on all the theories we mentioned.

All three of the theories we defined before were private theories. In order to depend on them, we needed to make them
public theories. See the section on Public and Private Theories.

Composing With Installed Theories

We can also compose with theories that are installed. If we wanted to have a theory that depends on the Coq theory
mathcomp.ssreflect we can add the following to our stanza:

(coq.theory
(name my_mathcomp_theory)
(theories mathcomp.ssreflect))

Note that mathcomp on its own would also work, since there would be a matchcomp directory in user-contrib,
however it would not compose locally with a coq.theory stanza with the mathcomp.ssreflect name (in case one
exists). So it is advisable to use the actual theory name. Dune is not able to validate theory names that have been
installed since they do not include their Dune metadata.

Building Documentation

Following from our last example, we might wish to build the HTML documentation for A. We simply do dune build
A/A.html/. This will produce the following files:

A
AA

aa.glob
aa.v
aa.vo

AB
ab.glob
ab.v
ab.vo

A.html
A.AA.aa.html
A.AB.ab.html

(continues on next page)

3.26. Coq 149

Dune Documentation

(continued from previous page)

coqdoc.css
index.html
toc.html

We may also want to build the LaTeX documentation of the theory B. For this we can call dune build B/B.tex/. If
we want to build all the HTML documentation targets, we can use the @doc alias as in dune build @doc. If we want
to build all the LaTeX documentation then we use the @doc-latex alias instead.

Coq Plugin Project

Let us build a simple Coq plugin to demonstrate how Dune can handle this setup.

.
dune-project
src

dune
hello_world.ml
my_plugin.mlpack
syntax.mlg

theories
dune
UsingMyPlugin.v

Our dune-project will need to have a package for the plugin to sit in, otherwise Coq will not be able to find it.

(lang dune 3.15)
(using coq 0.8)

(package
(name my-coq-plugin)
(synopsis "My Coq Plugin")
(depends coq-core))

Now we have two directories, src/ and theories/ each with their own dune file. Let us begin with the plugin dune
file:

(library
(name my_plugin)
(public_name my-coq-plugin.plugin)
(synopsis "My Coq Plugin")
(flags :standard -rectypes -w -27)
(libraries coq-core.vernac))

(coq.pp
(modules syntax))

Here we define a library using the library stanza. Importantly, we declared which external libraries we rely on and
gave the library a public_name, as starting with Coq 8.16, Coq will identify plugins using their corresponding findlib
public name.

The coq.pp stanza allows src/syntax.mlg to be preprocessed, which for reference looks like:

150 Chapter 3. Reference Manual

Dune Documentation

DECLARE PLUGIN "my-coq-plugin.plugin"

VERNAC COMMAND EXTEND CallToC CLASSIFIED AS QUERY
| ["Hello"] -> { Feedback.msg_notice Pp.(str Hello_world.hello_world) }
END

Together with hello_world.ml:

let hello_world = "hello world!"

They make up the plugin. There is one more important ingredient here and that is the my_plugin.mlpack file, needed
to signal coqdep the existence of my_plugin in this directory. An empty file suffices. See this note on .mlpack files.

The file for theories/ is a standard coq.theory stanza with an included libraries field allowing Dune to see
my-coq-plugin.plugin as a dependency.

(coq.theory
(name MyPlugin)
(package my-coq-plugin)
(plugins my-coq-plugin.plugin))

Finally, our .v file will look something like this:

(* For Coq < 8.16 *)
Declare ML Module "my_plugin".

(* For Coq = 8.16 *)
Declare ML Module "my_plugin:my-coq-plugin.plugin".

(* At some point Coq 8.17 or 8.18 will transition to the syntax below, check Coq's manual␣
→˓*)
Declare ML Module "my-coq-plugin.plugin".

Hello.

Running dune build will build everything correctly.

3.26.6 Running a Coq Toplevel

Dune supports running a Coq toplevel binary such as coqtop, which is typically used by editors such as CoqIDE or
Proof General to interact with Coq.

The following command:

$ dune coq top <file> -- <args>

runs a Coq toplevel (coqtop by default) on the given Coq file <file>, after having recompiled its dependencies as
necessary. The given arguments <args> are forwarded to the invoked command. For example, this can be used to pass
a -emacs flag to coqtop.

A different toplevel can be chosen with dune coq top --toplevel CMD <file>. Note that using --toplevel
echo is one way to observe what options are actually passed to the toplevel. These options are computed based on the
options that would be passed to the Coq compiler if it was invoked on the Coq file <file>.

In certain situations, it is desirable to not rebuild dependencies for a .v files but still pass the correct flags to the toplevel.
For this reason, a --no-build flag can be passed to dune coq top which will skip any building of dependencies.

3.26. Coq 151

Dune Documentation

Limitations

• Only files that are part of a stanza can be loaded in a Coq toplevel.

• When a file is created, it must be written to the file system before the Coq toplevel is started.

• When new dependencies are added to a file (via a Coq Require vernacular command), it is in principle required
to save the file and restart to Coq toplevel process.

3.26.7 Coq-Specific Variables

There are some special variables that can be used to access data about the Coq configuration. These are:

• %{coq:version} the version of Coq.

• %{coq:version.major} the major version of Coq (e.g., 8.15.2 gives 8).

• %{coq:version.minor} the minor version of Coq (e.g., 8.15.2 gives 15).

• %{coq:version.suffix} the suffix version of Coq (e.g., 8.15.2 gives .2 and 8.15+rc1 gives +rc1).

• %{coq:ocaml-version} the version of OCaml used to compile Coq.

• %{coq:coqlib} the output of COQLIB from coqc -config.

• %{coq:coq_native_compiler_default} the output of COQ_NATIVE_COMPILER_DEFAULT from coqc
-config.

See Variables for more information on variables supported by Dune.

3.26.8 Coq Environment Fields

The env stanza has a (coq <coq_fields>) field with the following values for <coq_fields>:

• (flags <flags>): The default flags passed to coqc. The default value is -q. Values set here become the
:standard value in the (coq.theory (flags <flags>)) field.

• (coqdoc_flags <flags>): The default flags passed to coqdoc. The default value is --toc. Values set here
become the :standard value in the (coq.theory (coqdoc_flags <flags>)) field.

3.27 Dune RPC

Starting from dune 3.0, dune’s watch mode also runs an RPC server. This is a general mechanism introduced to integrate
with various dune functionality. Some use cases we have in mind are:

• Text editors that would like to receive dune’s error reporting

• In the future, custom actions that need to communicate with dune

There’s no fixed scope for RPC, and we encourage users to submit requests to cover more functionality.

The purpose of this documentation is to explain how RPC works, and how to connect to it as a client. More concrete
information such as what requests are available is in Dune_rpc

152 Chapter 3. Reference Manual

https://github.com/ocaml/dune/blob/main/otherlibs/dune-rpc/dune_rpc.mli

Dune Documentation

3.27.1 dune-rpc library

We provide a client library dune-rpc to make it easy to write clients. The library has a versioned interface and we
guarantee to maintain its stability. The library documentation describes the guarantees in more detail.

RPC clients written with this library are guaranteed to work for all versions of the RPC server greater than it. In other
words, a client using version X will work with all servers >= X. However, it will not work with any servers < X.

The library contains a client implementation parameterised over a concurrency monad. The dune-rpc-lwt package
provides an instantiation of the RPC client defined in dune-rpc using lwt to implement the concurrency monad. It is
of course possible to instantiate the dune RPC client using alternative concurrency implementations.

The dune-rpc library provides an API to do the following:

• Initialise an RPC session over a channel

• Send RPC requests and notifications

• Handle notifications received from the server

• Definitions of available requests, notifications, and their associated types.

• Subscribe to streams of build progress events

Here is an example of a simple Dune RPC client that uses the dune-rpc and dune-rpc-lwt packages.

3.27.2 Connecting

To connect to Dune’s RPC server, it needs to be started in watch mode. It is possible to use dune build
--passive-watch-mode to start an RPC server which will listen for requests without starting a build by itself. Then
dune rpc build . will connect to it, trigger a build, and report status.

3.28 Packages

Packages are the units that are made installable. Executables and libraries that have a (public_name) are installable,
and need to be attached to a package.

3.28.1 How Dune Knows About Packages

Packages can be defined in two ways:

• If a pkg.opam file is found, it signals the existence of the pkg package to Dune. The contents of the opam file
are not interpreted by Dune.

• In dune-project, a (package) stanza with (name pkg) defines the pkg package.

Note: If you want to define public elements but are not interested in publishing to opam, it is not necessary to write
empty *.opam files. Instead, prefer declaring it in dune-project as a (package) with just a (name).

3.28. Packages 153

https://github.com/ocsigen/lwt
https://github.com/ocaml/dune/tree/main/otherlibs/dune-rpc-lwt/examples/rpc_client

Dune Documentation

3.28.2 Generating Opam Files

In the latter case, if (generate_opam_files) is present in (dune-project), Dune will generate pkg.opam using
the metadata in found in (package) stanzas and global fields such as (source).

See also:

How to Generate Opam Files from dune-project

If a pkg.opam.template file is found, the fields found in this opam file are added to the generated file, overriding the
generated ones in case of collision. This can be used as an escape hatch to add arbitrary opam fields.

3.28.3 What Dune Installs

Dune will install the following files:

• (library) stanzas which have a (public_name). The package name is the first component of the dot-separated
public name: (public_name pkg) and (public_name pkg.sub)will look for a package named pkg to install
their contents.

• (executable) and (test) stanzas with a (public_name). The package to install the files in is determined
by the (package) field, which can be omitted if there is only one package.

• (install) stanzas provide a low-level mechanism to install arbitrary files.

• Following the conventions of odig, files named README*, CHANGE*, HISTORY* and LICENSE* are installed in
the packages defined by opam files in the same directory. These files can be generated by user rules, So for
instance, a changelog generated by a user rule will be automatically installed as well.

3.29 Findlib Integration

Dune integrates with findlib so that it is possible to use a dependency built with Dune in a project that does not use
Dune, or vice versa.

See also:

The OCaml Ecosystem explains the role of findlib and its relation with Dune.

To do so, Dune both interprets and generates META files.

3.29.1 How Dune Interprets META files

META files use the concept of predicates, which can be used to change the interpretation of the directives the files
contain. However, Dune does not expose this to the user.

Instead, Dune interprets META files assuming the following set of predicates:

• mt: refers to a library that can be used with or without threads. Dune will force the threaded version.

• mt_posix: forces the use of POSIX threads rather than VM threads. VM threads are deprecated and will soon
be obsolete.

• ppx_driver: when a library acts differently depending on whether it’s linked as part of a driver or meant to add
a -ppx argument to the compiler, choose the former behavior.

154 Chapter 3. Reference Manual

https://erratique.ch/software/odig
https://github.com/ocaml/ocamlfind

Dune Documentation

3.29.2 The Special Case of the OCaml Compiler

Libraries installed by the compiler are a special case: when the OCaml compiler is older than version 5.0, it does not
include META files. In that situation, Dune uses its own internal database.

3.29.3 How Dune Generates META Files

When Dune builds a library, it generates a corresponding META file automatically. Usually, there is nothing to do.
However, for the rare cases where a specific META file is needed, or to ease the transition of a project to Dune, it is
possible to write/generate a specific one.

If a META.<package>.template is found in the same directory as <package>.OPAM, the generated META.<package>
file will be produced by starting from the contents of META.<package>.template and replacing lines of the form #
DUNE_GEN with the contents of the META it would normally generate.

For instance, to add field = "..." to the generated META file of package pkg, you can create a file named META.
pkg.template with the following contents:

DUNE_GEN
blah = "..."

3.29. Findlib Integration 155

Dune Documentation

156 Chapter 3. Reference Manual

CHAPTER

FOUR

EXPLANATION

These documents explain how certain feature works, or how Dune integrates with the rest of the OCaml ecosystem.

4.1 How Preprocessing Works

Preprocessing consists in transforming source code before it is compiled. The goal of this document is to explain how
this works in Dune.

Dune supports two separate ways of applying preprocessors, the “classic pipeline” (used with (staged_pps)), and
the “fast pipeline” (used for all other preprocessing specifications including (pps)).

The OCaml compilers provide options for specifying a preprocessing step. The -pp option is used to invoke a textual
preprocessor (something that reads text and returns text). The -ppx option is used to invoke a ppx rewriter (a function
that takes an AST and outputs an AST).

This is the “classic pipeline”: preprocessing is part of the compilation itself. This is simple, but has a problem: in order
to compute the dependencies of a module, it is necessary to pass the same -pp or -ppx option to ocamldep.

The classic pipeline has the following steps:

• preprocessing (as part of ocamldep)

• dependency analysis

• preprocessing (as part of compilation)

• compilation

Dune supports a “fast pipeline” where the preprocessor is invoked separately from the compiler and its output is saved.
Afterwards the preprocessed code is compiled directly.

The fast pipeline has the following steps:

• preprocessing

• dependency analysis

• compilation

It has several advantages: it only invokes the preprocessor once per file, and the preprocessed code is reused between
dependency analysis and different kinds of compilation. Also, when several preprocessors use ppxlib, they can be
combined in a preprocessing program that traverses the AST only once.

However, some specific code generators or preprocessors require direct access to the compilation artefacts of their
dependencies. Therefore they need to be used with the classic pipeline, even if it is slower. Note that a PPX is able to
know if it was called as part of ocamldep -ppx or ocamlopt -ppx, so it can act differently in each phase.

157

Dune Documentation

Dune chooses which pipeline to use depending on the provided Preprocessing Specification. It will select the fast
pipeline, unless (staged_pps) is used. In that case, the classic pipeline is used.

In the case of the fast pipeline, a single executable is built and accepts arguments for all preprocessors.

4.2 The OCaml Ecosystem

The OCaml ecosystem is not monolithic: the compiler and tools are not maintained by the same entities. As such, it
can be difficult to understand the history and roles of the various pieces of this ecosystem. The goal of this page is to
give a quick overview of the situation and the role that Dune plays in it.

4.2.1 The OCaml Compiler Distribution: Compiling and Linking

The OCaml compiler distribution contains “core” tools including the compilers (ocamlc and ocamlopt). They turn
source files (with extensions .ml and .mli) into executables and libraries. Dependencies between compiled objects
only exist at the module level, so this is a low-level tool.

4.2.2 Findlib: Metadata for Libraries

Findlib is a tool that defines the concept of library, so that libraries can depend on other libraries on top of the notion
of module. Definitions of libraries, and other pieces of metadata, are stored in META files.

Findlib ships an executable named ocamlfind that can be used as a wrapper on top of the compilers to perform tasks
such as producing an executable from compiled object files and external libraries.

4.2.3 Opam: a Collection of Software Projects

Opam is a package manager. It is used to determine which packages are necessary, and how to fetch and build them.
Packages can contain libraries, executables, and other kinds of files.

The notion of version is specific to opam. If your project uses a function named Png.read_file but this function has
been added only in version 1.2.0 of that package, opam needs to know about it.

Opam manages collections of installed packages, called switches. Using your project’s dependencies (names and ver-
sion constraints), it is able to create a switch that you’ll be using to develop your project.

Public definitions of packages are available in a database called opam-repository which is maintained as a public
Git repository. Publishing a package on opam (to make sure that external users can use your project) consists in adding
its definition to opam-repository.

4.2.4 Dune: Giving Structure to Your Source Tree

Dune is a build system. It is used to orchestrate the compilation of source files into executables and libraries.

Assuming you have a development switch set up, you communicate to Dune about how your project is organized in terms
of executables, libraries, and tests. It is then able to assemble the source files of your projects, with the dependencies
installed in an opam switch, to create compiled assets for your project.

158 Chapter 4. Explanation

https://github.com/ocaml/ocaml
https://github.com/ocaml/ocamlfind

Dune Documentation

4.2.5 How Dune Integrates With the Ecosystem

Dune is designed to integrate with the tools mentioned above:

• By knowing how the OCaml compilers operate, it knows which build commands should be re-executed if some
source files change.

• It outputs metadata like dependency information into META files that Findlib is able to make use of. This ensures
that even if a project does not use Dune, it can use a library that has been produced by Dune. Conversely, it can
read these files to determine dependency information for dependencies that have not been produced by Dune.

• It is able to generate opam files with filenames consistent with how opam looks for them. The generated files use
build commands that make use of the @install and @runtest aliases so that the Dune abstractions map to the
opam ones.

4.2.6 Dune is Opinionated

As described above, the OCaml ecosystem does not have a centralized toolchain. Units such as modules, libraries, and
packages operate at different levels, and the relation between these can be confusing to users.

Dune tries to simplify the picture by reducing the difference between these objects:

• By default, a library will only expose a single top-level module named after the library (this is called a wrapped
library).

• A library can only be installed in the package of the same name. This means that the names found in
dune-project and opam files (package names) are consistent with the names found in dune files (library names).
More precisely, libraries foo, foo.bar and foo.baz are part of the foo package.

4.3 How Dune integrates with opam

When instructed to do so (see How to Generate Opam Files from dune-project), Dune generates opam files with the
following instructions:

build: [
["dune" "subst"] {dev}
[
"dune"
"build"
"-p"
name
"-j"
jobs
"@install"
"@runtest" {with-test}
"@doc" {with-doc}

]
]

Let’s see what this means in detail.

4.3. How Dune integrates with opam 159

Dune Documentation

4.3.1 Substitution

The first step is to call dune subst, but only if the {dev} opam variable is set. This variable is only set when the
package is pinned. This means that dune subst does not run for released versions, but it does for development versions.

This is not a problem since released versions should have a (version) field set in dune-project, and placeholder
substitution should have been performed. dune-release takes care of these steps.

4.3.2 Opam Variables

In the second command line, name is a variable that evaluates to the name of the package being built, and jobs is a
variable that corresponds to the number of commands to run in parallel.

4.3.3 What -p Means

The -p flag, shorthand for --release-of-packages, is Dune’s public interface to set up the options for an opam
build. The exact semantics may change, but as of Dune 3.8 it is equivalent to the combination of:

• --root .: set the root to prevent Dune from looking it up.

• --only-packages name: ignore packages other than name defined in the project.

• --profile release: set the build profile to release. In particular, this ensures that warnings are not fatal.

• --ignore-promoted-rules: silently ignores all rules with (mode promote).

• --default-target @install: make sure that dune build with no target argument builds @install, not
@@default (this is not used in the opam integration since an explicit target is passed)

• --no-config: do not load the configuration file in the user’s home directory.

• --always-show-command-line: ensures that the programs executed by Dune end up in the opam logs.

• --promote-install-files: ensures that *.install files are present in the source tree after the build.

• --require-dune-project-file: fail if dune-project is not present. In some previous Dune versions,
dune-project could be generated when it is not present. This is not desirable with opam since the version the
package has been prepared with is not known.

4.3.4 The Targets We’re Building

The targets are specified as:

"@install"
"@runtest" {with-test}
"@doc" {with-doc}

The {with- } syntax is an opam filter. It means that the string before is present or not depending on the opam variable.
These variables, in turn, are set depending on the opam configuration.

Concretely, in the next table, if the opam command on the left is executed, the Dune target on the right will be built:

opam command Dune target
opam install pkg @install
opam install pkg --with-test @install @runtest
opam install pkg --with-test --with-doc @install @runtest @doc

160 Chapter 4. Explanation

https://github.com/tarides/dune-release

Dune Documentation

This filtering mechanism is also used to declare dependencies. If a package is using lwt and alcotest, but the latter
only in its test suite, its depends: field is:

"lwt"
"alcotest" {with-test}

This is expanded to just "lwt" in opam install pkg, but to "lwt" "alcotest" in opam install pkg
--with-test.

The meaning of these aliases is the following:

• @install depends on all the *.install files in the project. In turn, these depend on all the installable files
(libraries and executables with a public name and files that are manually installed through (install) stanzas).

• @runtest is the alias to which all tests are attached, including (test) stanzas. dune build @runtest is
equivalent to dune runtest.

• @doc executes odoc to create HTML docs under _build.

4.3.5 What Opam Expects From Dune

Given this build: lines and the fact that there is no install: line, what happens is the following:

• Opam executes dune subst, if the package is being pinned.

• Opam executes the build instruction, usually just dune build -p pkg @install

• This Dune command builds all the installable files and creates a pkg.install file.

• This file contains the paths to built files (somewhere in the _build directory) and the opam sections they should
be installed in.

• Opam interprets this file and copies the built files to their destination. The install file is also used as a manifest
of which files belong to which package, which is used when uninstalling the package.

4.4 How Dune Uses Dune to Build Dune

Dune’s build system is itself Dune. This works thanks to a bootstrap process. This document explains how this works.

4.4.1 boot/bootstrap.ml

boot/bootstrap.ml is an OCaml script (it is interpreted, not compiled) that is a mini-build system tailored to Dune
itself. It computes dependencies between the various modules by calling ocamldep, and it will generate build and link
commands. It knows how to execute these commands in parallel. It does not read any dune file. However, the project
structure and its system dependencies are encoded in boot/libs.ml.

This step produces _boot/dune.exe.

4.4. How Dune Uses Dune to Build Dune 161

Dune Documentation

4.4.2 Completing the Opam Installation

_boot/dune.exe is the bootstrap Dune. Since it has been built from the Dune sources, it will act like Dune: it can
read dune files, etc.

This is actually the dune executable that will get installed. But Opam does not know about this: it expects a dune.
install file that explains what files to install.

The next command run by the Opam instruction is the following:

$./_boot/dune.exe build dune.install --release --profile dune-bootstrap

By using the dune-bootstrap build profile, it not run a full build, but only copy _boot/dune.exe to its install
location, and generate dune.install.

4.4.3 make dev: Everything Else

The above describes how Dune itself is built through Opam, but that’s not all there is it to it: the Dune repository
contains other libraries that need to be built, the bootstrap Dune did not generate files useful for editor integration, and
it can not do incremental builds.

So the main Makefile has a make dev target that will run _boot/dune.exe build @install: this will rebuild the
project using Dune itself.

As a special rule, this build will regenerate boot/libs.ml using the locations of the internal libraries used to build
Dune.

4.5 The Dune Mental Model

It is not strictly necessary to understand Dune’s underlying model to use it; but knowing how it works under the hood
will help writing build rules, and also help understand some errors and what’s possible with Dune.

Note: This document is a simplification of the reality: the actual rules might be different, it does not touch rule loading
and glosses over how caching works, but should be a useful tool to build an understanding of Dune.

4.5.1 How Dune Works

The building block of Dune is the rule:

A rule reads dependencies and writes targets using an action (and it can be attached to aliases).

When dune build is executed, it will first read the project’s dune files to determine the rules that apply to the project.
Once it has done this, it will determine what actions it needs to execute to build the required targets.

162 Chapter 4. Explanation

Dune Documentation

4.5.2 An Example

Let’s take the following example.

• there’s a CLI tool written in OCaml.

• it has some build-time configuration stored in config.json.

• it has an integration test, in which the tool is executed with testdata.txt as input.

Configuration Generation

To express the generation of the configuration module we could write:

(rule
(deps convert/json2ml.exe config.json)
(target config.ml)
(action
(run convert/json2ml.exe config.json -o config.ml)))

This rule will:

• read its dependencies: convert/json2ml.exe and config.json

• and write its target: config.ml

• using an action: (run convert/json2ml.exe config.json -o config.ml)

This rule is very explicit: we write a stanza for a single Dune rule.

Building the Executable

In contrast, to describe the compilation of the executable, we would write:

(executable
(name tool)
(modules main config))

Here, we use Dune’s abstractions. Dune knows about the OCaml compilation model: the modules need to be compiled
and linked together. So it will generate the following rules under the hood:

• one rule to compile the Main module:

– it will read its dependency: main.ml

– and write its output: main.cmx

– using an action: (run ocamlopt -c main.ml)

• one rule to compile the Config module:

– it will read its dependency: config.ml

– and write its output: config.cmx

– using an action: (run ocamlopt -c config.ml)

• one rule to link the tool.exe executable:

– it will read its dependencies: main.cmx and config.cmx

– and write its output: tool.exe

4.5. The Dune Mental Model 163

Dune Documentation

– using an action: (run ocamlopt -o tool.exe main.cmx config.cmx)

Note that in this example, some files are targets of a rule and dependencies of another (.cmx files). We are unlikely to
ever interact with them directly, so it can also be useful to think of the (executable) stanza as a group of rules with
main.ml and config.ml as inputs and tool.exe as output.

Running the Tests

Some rules do not produce any output file, but we’re still interested in running their actions. A test is a good example:
we want the build process to exit with an error code if the action fails. In that case, the rule does not have targets, but
we “attach” it to an alias, runtest in this case. This gives us a way of requesting this rule to be executed. As we are
about to see, rules are executed lazily by asking for their targets to be built, so we would not be able to execute such
rules.

(rule
(deps tool.exe testdata.txt)
(alias runtest)
(action
(run tool.exe testdata.txt)))

This rule:

• reads its dependencies: tool.exe and testdata.txt

• writes no targets

• using an action: (run tool.exe testdata.txt)

• (and it is attached to runtest)

4.5.3 What to Build

Dune can build files and aliases. These can be found on the command line:

• dune build tool.exe will build the tool.exe file.

• dune build @example will build the example alias.

• dune build tool.exe @example will build both the file tool.exe and the example alias.

• dune runtest is a shortcut for dune build @runtest: it will build the runtest alias.

• dune build is a shortcut for dune build @@default: it will build the default alias in the current directory
(by default the all alias).

In other words, each dune build or dune runtest command always corresponds to a list of files and aliases to build.

See also:

Reference information on aliases

164 Chapter 4. Explanation

Dune Documentation

4.5.4 How Dune Interprets Rules

We have now seen that Dune sets up rules for a project, and that every build command has a list of files and aliases that
we are asking to build.

Now let’s see how this request is processed:

• to build a file, Dune will first check if it is in the source tree. In that case, there is nothing to do. Otherwise,
it will check if it is the target of a rule. In that case, it will execute this rule. (Dune will raise an error in other
cases: if the file is both in the source tree and the target of a rule, or if it is neither)

• to build an alias, Dune will execute all the rules that are attached to this alias.

• to execute a rule, Dune will first build all the dependencies (files or aliases) of this rule. Then it will execute the
action attached to the rule. When Dune is about to execute an action, it checks (in various caches) if it executed
it before on the same set of dependencies, and, if yes, it can skip executing it and reuse the previous result.

In the case of our example, if we call dune runtest, Dune will consider all rules attached to the runtest alias. In
this case it is just the integration test rule. It needs to build its dependencies, tool.exe and testdata.txt. The
latter is present in the source tree. However, tool.exe is the target of the linking rule defined by the (executable)
stanza. This rule requires main.cmx and config.cmx. main.cmx is the target of the compilation rule for the Main
module, which depends on main.ml. This file is in the source tree, so let’s copy it under _build. This rule has all its
dependencies available, so we can run its action, which writes main.cmx. Getting back to the dependencies of tool.
exe, config.cmx is the target of the linking rule of the Config module. This rule has config.ml has a dependency.
This file is itself the target of the configuration module rule, which lists config.json and convert/json2ml.exe.
The first is available in the source tree and to simplify, let’s assume that the second one has been built. This action
has all its dependencies available, so we can execute its action to produce its target, config.ml. Now the module
compilation rule for Config can be executed, producing config.cmx; and in turn the linking rule can be executed,
producing tool.exe. Finally, tool.exe can be executed with testdata.txt as its argument.

In a nutshell: we recursively copied all the dependencies of the test rule, and executed the rules in the correct order.

This is a “cold build”, where there were no previous build artifacts. Note that if we change only part of the project (say
the main.ml file), only a small number of rules will be evaluated, the ones that depend on main.ml.

4.5.5 Conclusion

Dune’s underlying model is based on rules. Stanzas are high-level constructs that can generate multiple rules, that are
not always visible.

To build a target, Dune looks for the rule that produces that target and makes its way back to source files.

Rules define a directed acyclic graph which models dependency relations between files. Most of the rules in that graph
may be executed for a cold build, but just the minimum will be executed for an incremental build.

4.5. The Dune Mental Model 165

Dune Documentation

166 Chapter 4. Explanation

CHAPTER

FIVE

ADVANCED TOPICS

These documents describe some advanced or very specific features of Dune.

5.1 Dynamic Loading of Packages with Findlib

The preferred way for new development is to use Plugins and Dynamic Loading of Packages.

Dune supports the findlib.dynload package from Findlib that enables dynamically-loading packages and their de-
pendencies (using the OCaml Dynlink module). Adding the ability for an application to have plugins just requires
adding findlib.dynload to the set of library dependencies:

(library
(name mytool)
(public_name mytool)
(modules ...)

)

(executable
(name main)
(public_name mytool)
(libraries mytool findlib.dynload)
(modules ...)

)

Use Fl_dynload.load_packages l in your application to load the list l of packages. The packages are loaded only
once, so trying to load a package statically linked does nothing.

A plugin creator just needs to link to your library:

(library
(name mytool_plugin_a)
(public_name mytool-plugin-a)
(libraries mytool)

)

For clarity, choose a naming convention. For example, all the plugins of mytool should start with mytool-plugin-.
You can automatically load all the plugins installed for your tool by listing the existing packages:

let () = Findlib.init ()
let () =
let pkgs = Fl_package_base.list_packages () in

(continues on next page)

167

http://projects.camlcity.org/projects/findlib.html

Dune Documentation

(continued from previous page)

let pkgs =
List.filter

(fun pkg -> 14 <= String.length pkg && String.sub pkg 0 14 = "mytool-plugin-")
pkgs

in
Fl_dynload.load_packages pkgs

5.2 Profiling Dune

If --trace-file FILE is passed, Dune will write detailed data about internal operations, such as the timing of
commands that Dune runs.

The format is compatible with Catapult trace-viewer. In particular, these files can be loaded into Chromium’s chrome:/
/tracing. Note that the exact format is subject to change between versions.

5.3 Package Version

Dune determines a package’s version by looking at the version field in the package. If the version field isn’t set, it looks
at the toplevel version field in the dune-project field. If neither are set, Dune assumes that we are in development
mode and reads the version from the VCS, if any. The way it obtains the version from the VCS is described in the
build-info section.

When installing the files of a package on the system, Dune automatically inserts the package version into various
metadata files such as META and dune-package files.

5.4 OCaml Syntax

If a dune file starts with (* -*- tuareg -*- *), then it is interpreted as an OCaml script that generates the dune
file as described in the rest of this section. The code in the script will have access to a Jbuild_plugin module containing
details about the build context it’s executed in.

The OCaml syntax gives you an escape hatch for when the S-expression syntax is not enough. It isn’t clear whether the
OCaml syntax will be supported in the long term, as it doesn’t work well with incremental builds. It is possible that it
will be replaced by just an include stanza where one can include a generated file.

Consequently you must not build complex systems based on it.

5.5 Variables for Artifacts

For specific situations where one needs to refer to individual compilation artifacts, special variables (see Variables) are
provided, so the user doesn’t need to be aware of the particular naming conventions or directory layout implemented
by Dune.

These variables can appear wherever a Dependency Specification is expected and also inside Actions. When used inside
Actions, they implicitly declare a dependency on the corresponding artifact.

The variables have the form %{<ext>:<path>}, where <path> is interpreted relative to the current directory:

168 Chapter 5. Advanced Topics

https://github.com/catapult-project/catapult/blob/master/tracing/README.md
https://github.com/ocaml/dune/blob/master/plugin/jbuild_plugin.mli

Dune Documentation

• cmo:<path>, cmx:<path>, and cmi:<path> expand to the corresponding artifact’s path for the module speci-
fied by <path>. The basename of <path> should be the name of a module as specified in a (modules) field.

• cma:<path> and cmxa:<path> expands to the corresponding artifact’s path for the library specified by <path>.
The basename of <path> should be the name of the library as specified in the (name) field of a library stanza
(not its public name).

In each case, the expansion of the variable is a path pointing inside the build context (i.e., _build/<context>).

5.6 Building an Ad Hoc .cmxs

In the model exposed by Dune, a .cmxs target is created for each library. However, the .cmxs format itself is more
flexible and is capable to containing arbitrary .cmxa and .cmx files.

For the specific cases where this extra flexibility is needed, one can use Variables for Artifacts to write explicit rules to
build .cmxs files not associated to any library.

Below is an example where we build my.cmxs containing foo.cmxa and d.cmx. Note how we use a library stanza to
set up the compilation of d.cmx.

(library
(name foo)
(modules a b c))

(library
(name dummy)
(modules d))

(rule
(targets my.cmxs)
(action (run %{ocamlopt} -shared -o %{targets} %{cmxa:foo} %{cmx:d})))

5.6. Building an Ad Hoc .cmxs 169

Dune Documentation

170 Chapter 5. Advanced Topics

CHAPTER

SIX

MISCELLANEOUS

These documents contain tidbits of info that do not fit anywhere else, and information about the project itself.

6.1 FAQ

6.1.1 Why Do Many Dune Projects Contain a Makefile?

Many Dune projects contain a root Makefile. It’s often only there for convenience for the following reasons:

1. There are many different build systems out there, all with a different CLI. If you have been hacking for a long
time, the one true invocation you know is make && make install, possibly preceded by ./configure.

2. You often have a few common operations that aren’t part of the build, so make <blah> is a good way to provide
them.

3. make is shorter to type than dune build @install

6.1.2 How to Add a Configure Step to a Dune Project

The with-configure-step example shows one way to add a configure step that preserves composability; i.e., it doesn’t
require manually running the ./configure script when working on multiple projects simultaneously.

6.1.3 Can I Use topkg with Dune?

While it’s possible to use the topkg-jbuilder, it’s not recommended. dune-release subsumes topkg-jbuilder and is
specifically tailored to Dune projects.

6.1.4 How Do I Publish My Packages with Dune?

Dune is just a build system and considers publishing outside of its scope. However, the dune-release project is specifi-
cally designed for releasing Dune projects to opam. We recommend using this tool for publishing Dune packages.

171

https://github.com/ocaml/dune/tree/master/example/with-configure-step.t
https://github.com/samoht/topkg-jbuilder
https://github.com/samoht/dune-release
https://github.com/samoht/dune-release

Dune Documentation

6.1.5 Where Can I Find Some Examples of Projects Using Dune?

The dune-universe repository contains a snapshot of the latest versions of all opam packages that depend on Dune.
Therefore, it’s a useful reference to find different approaches for constructing build rules.

6.1.6 What is Jenga?

jenga is a build system developed by Jane Street, mainly for internal use. It was never usable outside of Jane Street,
so it’s not recommended for general use. It has no relationship to Dune apart from Dune being the successor to Jenga
externally. Eventually, Dune is expected to replace Jenga internally at Jane Street as well.

6.1.7 How to Make Warnings Non-Fatal

jbuilder formerly displayed warnings, but most of them wouldn’t stop the build. However, Dune makes all warnings
fatal by default. This can be a challenge when porting a codebase to Dune. There are two ways to make warnings
non-fatal:

• The jbuilder compatibility executable works even with dune files. You can use it while some warnings remain
and then switch over to the dune executable. This is the recommended way to handle the situation.

• You can pass --profile release to dune. It will set up different compilation options that usually make sense
for release builds, including making warnings non-fatal. This is done by default when installing packages from
opam.

• You can change the flags used by the dev profile by adding the following stanza to a dune file:

(env
(dev
(flags (:standard -warn-error -A))))

6.1.8 How to Turn Specific Errors into Warnings

Dune is strict about warnings by default in that all warnings are treated as fatal errors. To change certain errors into
warnings for a project, you can add the following to dune-workspace:

(env (dev (flags :standard -warn-error -27-32)))

In this example, the warnings 27 (unused-var-strict) and 32 (unused-value-declaration) are treated as warnings rather
than errors.

6.1.9 How to Display the Output of Commands as They Run

When Dune runs external commands, it redirects and saves their output, then displays it when complete. This ensures
that there’s no interleaving when writing to the console.

But this might not be what the you want. For example, when you debug a hanging build.

In that case, one can pass -j1 --no-buffer so the commands are directly printed on the console (and the parallelism
is disabled so the output stays readable).

172 Chapter 6. Miscellaneous

https://github.com/dune-universe/dune-universe
https://github.com/janestreet/jenga

Dune Documentation

6.1.10 How Can I Generate an mli File From an ml File

When a module starts as just an implementation (.ml file), it can be tedious to define the corresponding interface (.mli
file).

It is possible to use the ocaml-print-intf program (available on opam through $ opam install
ocaml-print-intf) to generate the right mli file:

$ dune exec -- ocaml-print-intf ocaml_print_intf.ml
val root_from_verbose_output : string list -> string
val target_from_verbose_output : string list -> string
val build_cmi : string -> string
val print_intf : string -> unit
val version : unit -> string
val usage : unit -> unit

The ocaml-print-intf program has special support for Dune, so it will automatically understand external depen-
dencies.

6.1.11 How Can I Build a Single Library?

You might want to do this when you don’t have all the dependencies installed to compile an entire project, or parts of
the project don’t build for whatever reason. Maybe you want to check if your changes compile or produce build artifacts
needed by ocaml-lsp-server.

Suppose you have a library defined in src/foo/dune:

(library
(public_name my_library)
...)

You can build this library on its own by running the following from the project root directory:

$ dune build %{cmxa:src/foo/my_library}

Note that the path (src/foo in the example above) is relative to the current directory - not the project root. If the
library defines a name distinct from its public_name then that can be used interchangeably with the public_name in
this command.

6.1.12 Files and Directories Whose Names Begin with “.” (Period) are Ignored by
source_tree

Dune’s default behaviour is to ignore files and directories starting with “.” when copying directories with source_tree.
This is to avoid accidentally copying the .git directory into the _build directory during a build.

This is a common source of confusion when interoperating with other libraries that use hidden directories for configu-
ration, such as Rust. For example consider this rule which builds a Rust library contained in a subdirectory foo-rs:

(rule
(target foo.a)
(deps
(source_tree foo-rs))

(action
(continues on next page)

6.1. FAQ 173

Dune Documentation

(continued from previous page)

(progn
(chdir
foo-rs
(run cargo build --release))
(run mv foo-rs/target/release/%{target} %{target}))))

The build config for the Rust project will be in a directory foo-rs/.cargo/config.toml, and by default the .cargo
directory won’t get copied into the _build directory and so the Rust project will build with an incorrect configuration.

To fix this, create a dune file at the top level of the Rust project (i.e., foo-rs/dune):

(dirs :standard .cargo)

If you’re following the standard advice for embedding Rust projects into Dune projects then you likely already have a
dune project inside your Rust project that looks like:

(dirs :standard \ target)
(data_only_dirs vendor)

In this case you can update it to look like this:

(dirs :standard .cargo \ target)
(data_only_dirs vendor)

6.1.13 How Can I Write Inline Tests in a Package Without my Users Needing to Install
ppx_inline_test?

If you came to OCaml from Rust and noticed that Dune has a feature for running inline tests you might be wondering
how to do the OCaml equivalent of:

// define a private function
fn foo() { ... }

// test the function right next to its definition
#[test]
fn test_of_foo() { ... }

That is, writing tests for private functions right next to the definition of those functions. The Inline Tests documentation
describes how to do this using the ppx_inline_test package; however, if you do this in your package, then your pack-
age must unconditionally depend on the ppx_inline_test package. Opam has a notion of test-only dependencies (its
with-test flag), but you cannot use this with ppx_inline_test. The consequence of this is that anyone depending
on your package is also transitively depending on ppx_inline_test as well as all of its dependencies.

The reason for this is OCaml code with preprocessor directives (such as those used for inline tests with
ppx_inline_test) is technically not valid OCaml code until it has been preprocessed. Unlike the cargo build
system used for Rust, Dune does not have a preprocessor built into it. Instead, it relies on external tools (such as
ppx_inline_test) to parse the code and replace any preprocessor directives with valid OCaml. Dune doesn’t know
how to parse OCaml code at all so it can’t even remove inline tests from the code in cases where ppx_inline_test
is unavailable.

The blessed workaround for folks who want to use ppx_inline_test in their packages but don’t want to add it as a
dependency is to create a new (unreleased) package which contains all the tests. In the original package, expose all
the private APIs you intend to test via public modules named something foreboding such as For_test so your users

174 Chapter 6. Miscellaneous

Dune Documentation

know not to rely on their contents and then have the test package define tests that call your “private” APIs through the
For_test modules.

6.2 Goal of Dune

The Dune project strives to provide the best possible build tool for the entire OCaml community, including individual
developers contributing to open source projects in their free time, larger companies (such as Jane Street), and communi-
ties, like MirageOS and Irmin. Additionally, we aim to provide the same features for other neighbouring communities,
such as Coq and possibly Reason/Bucklescript, in the future.

We haven’t reached this goal yet, as Dune still requires development in some areas to be such a tool, but we’re steadily
working towards that goal. On a practical level, a few boxes must be checked, and a considerable number of details
needs to be sorted out. At a high-level, we think a tool that works for everyone in the OCaml community should at
least:

1. have excellent backward compatibility properties

2. have a robust and scalable core

3. remain a no-brainer dependency

4. remain accessible

5. have very good support for the OCaml language

6. be extensible

At this point, we’ve done a good job at 1, 3, 4, and 5. We’re currently working towards 2 and are doing the preparatory
work for 6. Once all these boxes have been checked, we’ll consider the Dune project complete.

Below, we develop each point and give some insights into our current and future focuses.

6.2.1 Have Excellent Backward-Compatibility Properties

In an open source community, two types of groups exist: those with enough resources to continuously bring their
projects up-to-date and those who work on them in their free time. The latter obviously can’t provide the same level of
continuous support and updates as the former.

From the Dune point of view, we consider every released project with dune files a precious piece that will potentially
never change, so we discourage changing Dune in a way where it could no longer understand a released project.

Of course, we can’t give a 100% guarantee that Dune will always behave exactly the same. That would be unrealistic
and would prevent the project from moving forward. In order to provide good backward-compatibility properties while
still keeping the project fresh and dynamic, we need to properly delimit, document, and version the set of behaviours
on which users rely. For this to be manageable, the surface Dune API must remain small.

A distinguishing feature of Dune allows the user to declare which version of the dune tool they wrote the project
against, and dune will morph itself to behave the same as this version of the dune binary, even if it’s a newer version.
As a result, a recent dune binary version can understand a wide range of Dune projects written against many different
versions of Dune, and while we strictly follow semantic versioning, new major versions of Dune effectively introduce
very few breaking changes. Most projects don’t need upper bounds on Dune.

This guarantee is of course limited to documented behaviours.

6.2. Goal of Dune 175

https://semver.org/

Dune Documentation

6.2.2 Have a Robust and Scalable Core

Tech companies tend be fond of big mono repositories, so for compatibility, Dune must consume large repositories
without blinking. It not only needs to build fast, but more importantly, it must not impede fast feedback during devel-
opment, no matter the size of the repository.

Note that we’ll only test Dune on repositories as large as people participating in Dune’s development require. Currently,
the largest user is Jane Street. If someone wanted to use Dune on much larger repositories than the ones used at Jane
Street, and this required a significant amount of effort on Dune, this wouldn’t be considered unless we get some help
to do so and we can keep the other promises.

In particular, while making Dune scalable, we must also ensure Dune doesn’t turn into a monster, because no one wants
to force their users to install a monster to build their project. This brings us to the next point of Dune being a no-brainer
dependency:

6.2.3 Remain a No-Brainer Dependency

Dune is a hard dependency of any Dune project. Anyone using Dune to develop their project will have to ask their user
to install Dune. For this reason, it is very important to keep Dune as lean as possible.

We need to be careful when we start relying on an external piece of software or when we introduce new concepts. We
must not introduce duplication or useless stuff. The overall projects has to remain lean.

It’s also important to keep Dune as easy to install as possible. Currently, the only requirement to build Dune is a
working OCaml compiler. Nothing else is required, not even a shell, and we should keep it this way.

6.2.4 Remain Accessible

Since Dune aims to be the best possible tool for the whole OCaml community, it’s important to keep Dune accessible.
Getting started and learning Dune should be straightforward.

For that purpose, when designing the language (the command line interface or the documentation), we must take on the
new-user perspective, one who just discovered Dune and its features, because Dune should be suitable for everyone!
It also needs to provide advanced and more complex features for expert users. However, the documentation should
always flow from the simpler concepts and common tasks to the more complex ones, even if the simpler features can
be explained as instances of the more general ones.

6.2.5 Have Excellent Support for the OCaml Language

There are many, many build systems out there. Dune stands out because it primarily targets the OCaml community, so
Dune must come with excellent support for the OCaml language and OCaml projects in general.

If it didn’t, Dune would just be yet another generic build system.

Perhaps in the future some of the general build system will take over, and Dune might just become a plugin in this system.
It could even disappear into the language, if the compiler gains significant high-level features. But for now, Dune is
a standalone build system that primarily serves the OCaml community’s needs, and to the extent that is reasonably
possible, the needs of other functional language communities.

176 Chapter 6. Miscellaneous

Dune Documentation

6.2.6 Be Extensible

No matter the quality of the OCaml language’s support, it will never be enough to cover every single project need. For
this reason, Dune must provide some form of openness for projects with need that don’t completely fit in the Dune
model.

In the long run, extensibility tends to obstruct innovation, and we should always strive to ensure that we cover all the
general needs of the main Dune language; however, we’ll always need an escape hatch for Dune to remain a practical
choice.

It’s pretty clear that extensibility must be done via OCaml code, and currently it’s a bit difficult to use OCaml as a
proper extension language, though some work is being done to help on that front.

6.3 Working on the Dune Codebase

This section gives guidelines for working on Dune itself. Many of these are general guidelines specific to Dune.
However, given that Dune is a large project developed by many different people, it’s important to follow these guidelines
in order to keep the project in a good state and pleasant to work on for everybody.

Table of Contents

• Dependencies

• Bootstrapping

• Writing Tests

• Setting Up Your Development Environment Using Nix

• Releasing Dune

• Adding Stanzas

• Dune Rules

• Documentation

• Vendoring

• General Guidelines

• Benchmarking

• Formatting

6.3.1 Dependencies

To create a directory-local opam switch with the dependencies necessary to build the tests, run:

$ make dev-switch

6.3. Working on the Dune Codebase 177

Dune Documentation

6.3.2 Bootstrapping

Dune uses Dune as its build system, which requires some specific commands to work. Running make dev bootstraps
(if necessary) and runs ./dune.exe build @install.

If you want to just run the bootstrapping step itself, build the bootstrap phony target with

$ make bootstrap

You can always rerun this to bootstrap again.

Once you’ve bootstrapped Dune, you should be using it to develop Dune itself. Here are the most common commands
you’ll be running:

to make sure everything compiles:
$./dune.exe build @check
run all the tests
$./dune.exe runtest
run a particular cram foo.t:
$./dune.exe build @foo

Note that tests are currently written for version 4.14.1 of the OCaml compiler. Some tests depend on the specific
wording of compilation errors which can change between compiler versions, so to reliably run the tests make sure that
ocaml.4.14.1 is installed. The TEST_OCAMLVERSION in the Makefile at the root of the Dune repo contains the
current compiler version for which tests are written.

See also:

How Dune Uses Dune to Build Dune

6.3.3 Writing Tests

Most of our tests are written as expectation-style tests. While creating such tests, the developer writes some code and
then lets the system insert the output produced during the code execution. The system puts it right next to the code in
the source file.

Once you write and commit a test, the system checks that the captured output matches the one produced by a fresh code
execution. When the two don’t match, the test fails. The system then displays a diff between what was expected and
what the code produced.

We write both our unit tests and integration tests in this way. For unit tests, we use the ppx_expect framework, where
we introduce tests via let%expect_test, and [%expect ...] nodes capture expectations:

let%expect_test "<test name>" =
print_string "Hello, world!";
[%expect {|
Hello, world!

|}]

For integration tests, we use a system similar to Cram tests for testing shell commands and their behavior:

$ echo 'Hello, world!'
Hello, world!

$ false
[1]

(continues on next page)

178 Chapter 6. Miscellaneous

https://github.com/janestreet/ppx_expect
https://bitheap.org/cram/

Dune Documentation

(continued from previous page)

$ cat <<EOF
> multi
> line
> EOF
multi
line

See also:

actions_to_sh tests
An example of expect-tests.

mdx-stanza/locks.t
An example of Cram test.

When running Dune inside tests, the INSIDE_DUNE environment variable is set. This has the following effects:

• Change the default root detection behaviour to use the current directory rather than the top most dune-project
/ dune-workspace file.

• Be less verbose when Dune outputs a user message.

• Error reporting is deterministic by default.

• Prefer not to use a diff program for displaying diffs.

This list is not exhaustive and may change in the future. In order to find the exact behaviour, it is recommended to
search for INSIDE_DUNE in the codebase.

Guidelines

As with any long running software project, code written by one person will eventually be maintained by another.
Just like normal code, it’s important to document tests, especially since test suites are most often composed of many
individual tests that must be understood on their own.

A well-written test case should be easily understood. A reader should be able to quickly understand what property the
test is checking, how it’s doing it, and how to convince oneself that the test outcome is the right one. A well-written
test makes it easier for future maintainers to understand the test and react when the test breaks. Most often, the code
will need to be adapted to preserve the existing behavior; however, in some rare cases, the test expectation will need to
be updated.

It’s crucial that each test case makes its purpose and logic crystal clear, so future maintainers know how to deal with it.

When writing a test, we generally have a good idea of what we want to test. Sometimes, we want to ensure a newly
developed feature behaves as expected. Other times, we want to add a reproduction case for a bug reported by a user
to ensure future changes won’t reintroduce the faulty behaviour. Just like when programming, we turn such an idea
into code, which is a formal language that a computer can understand. While another person reading this code might
be able to follow and understand what the code does step by step, it isn’t clear that they’ll be able to reconstruct the
original developer’s idea. Even worse, they might understand the code in a completely different way, which would lead
them to update it incorrectly.

6.3. Working on the Dune Codebase 179

https://github.com/ocaml/dune/blob/3.12.2/test/expect-tests/dune_engine/action_to_sh_tests.ml
https://github.com/ocaml/dune/blob/3.12.2/test/blackbox-tests/test-cases/mdx-stanza/locks.t

Dune Documentation

6.3.4 Setting Up Your Development Environment Using Nix

You can use Nix to setup the development environment. This can be done by running nix develop in the root of the
Dune repository.

Note that Dune only takes OCaml as a dependency and the rest of the dependencies are used when running the test
suite.

Running nix develop can take a while the first time, therefore it is advisable to save the state in a profile.

`sh nix develop --profile nix/profiles/dune `

And to load the profile:

`sh nix develop nix/profiles/dune `

This profile might need to be updated from time to time, since the bootstrapped version of Dune may become stale.
This can be done by running the first command.

We have the following shells for specific tasks:

• nix develop .#slim for a dev environment with fewer dependencies that is faster to build.

• nix develop .#slim-melange: same as above, but additionally includes the melange and mel packages

• Building documentation requires nix develop .#doc.

• For running the Coq tests, you can use nix develop .#coq. NB: Coq native is not currently installed; this will
cause some of the tests to fail. It’s currently better to fallback to opam in this case.

6.3.5 Releasing Dune

Dune’s release process relies on dune-release. Make sure you install and understand how this software works before
proceeding. Publishing a release consists of two steps:

• Updating CHANGES.md to reflect the version being published.

• Running $ make opam-release to create the release tarball. Then publish it to GitHub and submit it to opam.

Major & Feature Releases

Given a new version x.y.z, a major release increments x, and a feature release increments y. Such a release must be
done from the main branch. Once you publish the release, be sure to publish a release branch named x.y.

Point Releases

Point releases increment the z in x.y.z. Such releases are done from the respective x.y branch of the respective feature
release. Once released, be sure to update CHANGES.md in the main branch.

180 Chapter 6. Miscellaneous

https://github.com/ocamllabs/dune-release

Dune Documentation

6.3.6 Adding Stanzas

Adding new stanzas is the most natural way to extend Dune with new features. Therefore, we try to make this as easy
as possible. The minimal amount of steps to add a new stanza is:

• Extend Stanza.t with a new constructor to represent the new stanza

• Modify Dune_file to parse the Dune language into this constructor

• Modify the rules to interpret this stanza into rules, usually done in Gen_rules`

Versioning

Dune is incredibly strict with versioning of new features, modifications visible to the user, and changes to existing rules.
This means that any added stanza must be guarded behind the version of the Dune language in which it was introduced.
For example:

; ("cram"
, let+ () = Dune_lang.Syntax.since Stanza.syntax (2, 7)
and+ t = Cram_stanza.decode in
[Cram t])

Here, Dune 2.7 introduced the Cram stanza, so the user must enable (lang dune 2.7) in their dune project file to
use it.

since isn’t the only primitive for making sure that versions are respected. See Dune_lang.Syntax for other commonly
used functions.

Experimental & Independent Extensions

Sometimes, Dune’s versioning policy is too strict. For example, it doesn’t work in the following situations:

• When most Dune independent extensions only exist inside Dune for development convenience, e.g., build rules
for Coq. Such extensions would like to impose their own versioning policy.

• When experimental features cannot guarantee Dune’s strict backwards compatibility. Such features may dropped
or modified at any time.

To handle both of these use cases, Dune allows the definition of new languages (with the same syntax). These languages
have their own versioning scheme and their own stanzas (or fields). In Dune itself, Syntax.t represents such languages.
Here’s an example of how the Coq syntax is defined:

let coq_syntax =
Dune_lang.Syntax.create ~name:"coq" ~desc:"the coq extension (experimental)"
[((0, 1), `Since (1, 9)); ((0, 2), `Since (2, 5))]

The list provides which versions of the syntax are provided and which version of Dune introduced them.

Such languages must be enabled in the dune project file separately:

(lang dune 3.15)
(using coq 0.8)

If such extensions are experimental, it’s recommended that they pass ~experimental:true, and that their versions
are below 1.0.

We also recommend that such extensions introduce stanzas or fields of the form ext_name.stanza_name or
ext_name.field_name to clarify which extensions provide a certain feature.

6.3. Working on the Dune Codebase 181

Dune Documentation

6.3.7 Dune Rules

Creating Rules

A Dune rule consists of 3 components:

• Dependencies that the rule may read when executed (files, aliases, etc.), described by 'a Action_builder.t
values.

• Targets that the rule produces (files and/or directories), described by 'a Action_builder.With_targets.t'
values.

• Action that Dune must execute (external programs, redirects, etc.). Actions are represented by Action.t values.

Combined, one needs to produce an Action.t Action_builder.With_targets.t value to create a rule. The rule
may then be added by Super_context.add_rule or a related function.

To make this maximally convenient, there’s a Command module to make it easier to create actions that run external
commands and describe their targets and dependencies simultaneously.

Loading Rules

Dune rules are loaded lazily to improve performance. Here’s a sketch of the algorithm that tries to load the rule that
generates some target file t.

• Get the directory that contains t. Call it d.

• Load all rules in d into a map from targets in that directory to rules that produce it.

• Look up the rule for t in this map.

To adhere to this loading scheme, we must generate our rules as part of the callback that creates targets in that directory.
See the Gen_rules module for how this callback is constructed.

6.3.8 Documentation

User documentation lives in the ./doc directory.

In order to build the user documentation, you must install python-sphinx, sphinx_rtd_theme and sphinx-copybutton.

Build the documentation with

$ make doc

For automatically updated builds, you can install sphinx-autobuild, and run

$ make livedoc

Nix users may drop into a development shell with the necessary dependencies for building docs nix develop .#doc.

182 Chapter 6. Miscellaneous

http://www.sphinx-doc.org/en/master/usage/installation.html
https://sphinx-rtd-theme.readthedocs.io/en/stable/
https://sphinx-copybutton.readthedocs.io/en/latest/index.html
https://pypi.org/project/sphinx-autobuild/

Dune Documentation

Structure

For structure, we use the Diátaxis framework. The core idea is that documents should fit in one of the following
categories:

• Tutorials, focused on learning

• How-to guides, focused on task solving

• Reference, focused on information

• Explanations, focused on understanding

Most features do not need a document in each category, but the important part is that a single document should not try
to be in several categories at once.

ReStructured Text

For code blocks containing Dune files, use .. code:: dune and indent with 3 spaces. Use formatting consistent
with how Dune formats Dune files (most importantly, do not leave orphan closing parentheses).

In a document that only contains Dune code blocks, it is possible to use the .. highlight:: dune directive to have
dune be the default lexer, and then it is possible to use the :: shortcut to end a line with a single : and start a code
block. See the source of Lexical Conventions for an example.

For links, prefer references that use :doc: (link to a whole document) or :term: (link to a definition in the glossary)
to :ref:.

Use the right lexers: - dune for dune and related files - opam for opam files - console for shell sessions and commands
(start with $) - cram for cram tests

Style

Use American spelling.

Use Title Case for titles and headings (every word except “little words” like of, and, or, etc.).

For project names, use the following capitalization:

• Dune is the project, dune is the command. Files are called dune files.

• dune-project should always be written in monospace.

• OCaml

• OCamlFormat, and ocamlformat is the command.

• odoc, always in monospace.

• opam. Can be capitalised as Opam at the beginning of sentences only, as the official name is formatted opam.
Even in titles, headers, and subheaders, it should be all lowercase: opam. The command is opam.

• esy. Can be capitalised as Esy.

• Nix. The command is nix.

• Js_of_ocaml can be abbreviated JSOO.

• MDX, rather than mdx or Mdx

• PPX, rather than ppx or Ppx; ppxlib

• UTop, rather than utop or Utop.

6.3. Working on the Dune Codebase 183

https://diataxis.fr/
https://apastyle.apa.org/style-grammar-guidelines/capitalization/title-case

Dune Documentation

6.3.9 Vendoring

Dune vendors some code that it uses internally. This is done to make installing Dune easy as it requires nothing but an
OCaml compiler as well as to prevent circular dependencies. Before vendoring, make sure that the license of the code
allows it to be included in Dune.

The vendored code lives in the vendor/ subdirectory. To vendor new code, create a shell script update-<library>.
sh, that will be launched from the vendor/ folder to download and unpack the source and copy the necessary source
files into the vendor/<library> folder. Try to keep the amount of source code imported minimal, e.g., leave out
dune-project files. For the most part, it should be enough to copy .ml and .mli files. Make sure to also include the
license if there is such a file in the code to be vendored to stay compliant.

As these sources get vendored not as subprojects but parts of Dune, you need to deal with public_name. The preferred
way is to remove the public_name and only use the private name. If that is not possible, the library can be renamed
into dune-private-libs.<library>.

To deal with the modified dune files in update-<library>.sh scripts, you can commit the modified files to dune
and make the update-<library>.sh script to use git checkout to restore the dune file.

For larger modifications, it is better to fork the upstream project in the ocaml-dune organisation and then vendor the
forked copy in Dune. This makes the changes better visible and easier to update from upstream in the long run while
keeping our custom patches in sync. The changes to the dune files are to be kept in the Dune repository.

It is preferable to cut out as many dependencies as possible, e.g., ones that are only necessary on older OCaml versions
or build-time dependencies.

6.3.10 General Guidelines

Dune has grown to be a fairly large project that over time has acquired its own style. Below is an attempt to enumerate
some important points of this style. These rules aren’t axioms and we may break them when justified. However, we
should have a good reason in mind when breaking them. Finally, the list isn’t exhaustive by any means and is subject
to change. Feel free to discuss anything in particular with the team.

• Parameter signatures should be self descriptive. Use labels when the types alone aren’t sufficient to make the
signature readable.

Bad:

val display_name : string -> string -> _ Pp.t

Good:

val display_name : first_name:string -> last_name:string -> _ Pp.t

• Avoid type aliases when possible. Yes, they might make some type signatures more readable, but they make the
code harder to grep and make Merlin’s inferred types more confusing.

• Every .ml file must have a corresponding .mli. The only exception to this rule is .ml files with only type
definitions.

• Do not write .mli only modules. They offer no advantages to .ml modules with type definitions and one cannot
define exceptions in .mli only modules

• Every module should have toplevel documentation that describes the module briefly. This is a good place to
discuss its purpose, invariants, etc.

• Keep interfaces short & sweet. The less functions, types, etc., there are, the easier it is for users to understand,
use, and ultimately modify the interface correctly. Instead of creating elaborate interfaces with the hope of
future-proofing every use case, embrace change and make it easier to throw out or replace the interface.

184 Chapter 6. Miscellaneous

https://github.com/ocaml-dune/

Dune Documentation

Ideally the interface should have one obvious way to use it. A particularly annoying violator of this principle is
the “logic-less chain of functions” helper. For example:

let foo t = bar t |> baz

If bar and baz are already public, then there’s no need to add yet another helper to save the caller a line of code.

• Define bindings as close to their use site as possible. When they’re far apart, reading code requires scrolling and
IDE tools to understand the code.

Bad:

let dir = .. in
(* 50 odd lines or so that don't use [dir] *)
f dir

Good:

let dir = .. in
f dir

• A corollary to the previous guideline: keep the scope of bindings as small as possible.

Bad:

let x1 = f foo in let x2 = f bar in
let y1 = g foo in let y2 = g bar in
let dx = x2 -. x1 in
let dy = y2 -. y1 in
dx^2 +. dy^2

Good:

let dx =
let x1 = f foo in let x2 = f bar in
x2 -. x1

in
let dy =
let y1 = g foo in let y2 = g bar in
y2 -. y1

in
dx^2 +. dy^2

• Prefer Code_error.raise instead of assert false. The reader often has no idea what invariant is broken by
the assert false. Kindly describe it to the reader in the error message.

• Avoid meaningless names like x, a, b, f. Try to find a more descriptive name or just inline it altogether.

• If a module Foo has a module type Foo.S and you’d like to avoid repeating its definition in the implementation
and the signature, introduce an .ml-only module Foo_intf and write the S only once in there.

• Instead of introducing a type foo, consider introducing a module Foo with a type t. This is often the place to
put functions related to foo.

• Avoid optional arguments. They increase brevity at the expense of readability and are annoying to grep. Further-
more, they encourage callers not to think at all about these optional arguments even if they often should.

• Avoid qualifying modules when accessing fields of records or constructors. Avoid it altogether if possible, or
add a type annotation if necessary.

6.3. Working on the Dune Codebase 185

Dune Documentation

Bad:

let result = A.b () in
match result.A.field with
| B.Constructor -> ...

Good:

let result : A.t = A.b () in
match (result.field : B.t) with
| Constructor -> ...

• When constructing records, use the qualified names in in the record. Do not open the record. The local open
syntax pulls in all kinds of names from the opened module and might shadow the values that you’re trying to put
into the record, leading to difficult debugging.

Bad; if A.value exists, it will pick that over value:

let value = 42 in
let record = A.{ field = value; other } in
...

Good:

let value = 42 in
let record = { A.field = value; other } in
...

• Stage functions explicitly with the Staged module.

• Do not raise Invalid_argument. Instead, raise with Code_error.raise which allows to attach more infor-
mative payloads than just strings.

• When ignoring the value of a let binding let _ = ..., we add type annotations to the ignored value let (_
: t) = We do this convention because:

• We need to make sure we never ignore Fiber.t accidentally. Functions that return Fiber.t are always free of
side effects so we need to bind on the result to force the side effect.

• Whenever a function is changed to return an error via its return value, we want the compiler to notify all the
callers that need to be updated.

• To write a to_dyn function on a record type, use the following pattern. It ensures that the pattern matching will
break when a field is added. To ignore a field, add ; d = _, not ; _.

let to_dyn {a; b; c} =
Dyn.record
[("a", A.to_dyn a)
; ("b", B.to_dyn b)
; ("c", C.to_dyn c)
]

• To write an equality function, use the following pattern (this applies to other kinds of binary functions). The
same remarks about about pattern matching and ignoring fields apply.

let equal {a; b; c} t =
A.equal a t.a &&

(continues on next page)

186 Chapter 6. Miscellaneous

Dune Documentation

(continued from previous page)

B.equal b t.b &&
C.equal c t.c

Subjective Style Points

There’s some stylistic decisions we made that don’t have logical justification and are basically a matter of taste. Nev-
ertheless, it’s useful to follow them to keep the code consistent.

• Match patterns should be sorted by the length of their RHS when possible. Keep the shorter clauses near the top.

• If a module Foo defines a type t, all functions that take t in this module should have t as their first argument.
This is the “t comes first” rule.

• Do not mix |> and @@ in the same expression.

• Introduce bindings that will allow opportunities for record or label punning.

• Do not write inverted if-else expressions.

Bad:

(* try reading this out loud without short circuiting your brain *)
if not x then foo else bar

Good:

if x then bar else foo

• We prefer snake_casing identifiers. This includes the names of modules and module types.

• Avoid qualifying constructors and record fields. Instead, add type annotations to the type being matched on or
being constructed, e.g.,

Bad:

let foo = Command.Args.S []

Good:

let (foo : _ Command.Args.t) = S []

6.3.11 Benchmarking

Dune Bench

You can benchmark Dune’s performance by running make bench. This will run a subset of the Duniverse. If you are
running the bench locally, make sure that you bootstrap since that is the executable that the bench will run.

The bench will build a specially selected portion of the Duniverse once, called a “clean build”. Afterwards, the build
will be run 5 more times and are termed the “Null builds”.

In each run of the CI, there will be an ocaml-benchmarks status in the summary. Clicking Details will show a
bench report.

The report contains the following information:

• The build times for Clean and Null builds

6.3. Working on the Dune Codebase 187

Dune Documentation

• The size of the dune.exe binary

• User CPU times for the Clean and Null builds

• System CPU times for the Clean and Null builds

• All the garbage collection stats apart from “forced collections” for Clean and Null builds

Pull requests that add new libraries are likely to increase the size of the dune binary.

Performance gains in Dune can be observed in the Clean and Null build times.

Memory usage can be observed in the garbage collection stats.

Inline Benchmarks

Certain performance-critical parts of Dune are benchmarked using the inline_benchmarks library. These bench-
marks are run when running the tests. Their outputs are currently not recorded and are only used to detect performance
regressions.

Build-Time Benchmarks

We benchmark the build time of Dune in every PR. The times can be found here:

https://autumn.ocamllabs.io/ocaml/dune?worker=autumn&image=bench.Dockerfile

Melange Bench

We also benchmark a demo Melange project’s build time:

https://ocaml.github.io/dune/dev/bench/

Monorepo Benchmark

The file bench/monorepo/bench.Dockerfile sets up a Docker container for benchmarking Dune building a large
monorepo constructed with opam-monorepo. The monorepo is constructed according to the files in https://github.
com/ocaml-dune/ocaml-monorepo-benchmark/tree/main/benchmark. Build the Docker image from the root directory
of this repo.

E.g., run:

$ docker build . -f bench/monorepo/bench.Dockerfile --tag=dune-monorepo-benchmark

The monorepo benchmark Docker image requires duniverse directory to be mounted as a volume. Generate this
directory with a script from the ocaml-monorepo-benchmark repository:

$ git clone https://github.com/ocaml-dune/ocaml-monorepo-benchmark.git
$ cd ocaml-monorepo-benchmark
$./generate-duniverse.sh /tmp

This will create a directory /tmp/duniverse. Then to run the benchmark, run the Docker image in a container mount-
ing /tmp/duniverse as a volume at /home/opam/bench-dir/current-bench-data/duniverse (that specific
path is a requirement of current-bench). From within the container the benchmarks can be started by running make
bench. Do all this in a single command with:

188 Chapter 6. Miscellaneous

https://autumn.ocamllabs.io/ocaml/dune?worker=autumn&image=bench.Dockerfile
https://ocaml.github.io/dune/dev/bench/
https://github.com/tarides/opam-monorepo
https://github.com/ocaml-dune/ocaml-monorepo-benchmark/tree/main/benchmark
https://github.com/ocaml-dune/ocaml-monorepo-benchmark/tree/main/benchmark
https://github.com/ocaml-dune/ocaml-monorepo-benchmark
https://github.com/ocurrent/current-bench

Dune Documentation

$ docker run -it --volume=/tmp/duniverse:/home/opam/bench-dir/current-bench-data/
→˓duniverse dune-monorepo-benchmark bash --login -c 'make bench'

The benchmark will print out a JSON string in the format accepted by current-bench.

Read more at https://github.com/ocaml/dune/blob/main/bench/monorepo/README.md.

6.3.12 Formatting

When changing the formatting configuration, it is possible to add the reformatting commit to the .
git-blame-ignore-revs file. The commit will disappear from blame views. It is also possible to configure git
to have the same behavior locally.

It is recommended to edit that file in a second PR, to make sure that the referenced commit has not changed.

See also:

GitHub - Ignore commits in the blame view

6.3. Working on the Dune Codebase 189

https://github.com/ocurrent/current-bench
https://github.com/ocaml/dune/blob/main/bench/monorepo/README.md
https://docs.github.com/en/repositories/working-with-files/using-files/viewing-a-file#ignore-commits-in-the-blame-view

Dune Documentation

190 Chapter 6. Miscellaneous

INDEX

A
alias, 4

B
build context, 4
build context root, 4
build profile, 4
build target, 4

D
dialect, 5

E
environment, 4

I
installation, 4
installed world, 4

P
package, 4
placeholder substitution, 5
project, 4

R
root, 4

S
scope, 4

W
workspace, 4

191

	Getting Started and Core Concepts
	Overview
	Introduction
	Terminology
	Project Layout
	History

	Quickstart
	Initializing Projects
	Initializing an Executable
	Initializing a Library

	Building a Hello World Program From Scratch
	Building a Hello World Program Using Lwt
	Building a Hello World Program Using Core and Jane Street PPXs
	Defining a Library Using Lwt and ocaml-re
	Building a Hello World Program in Bytecode
	Setting the OCaml Compilation Flags Globally
	Using Cppo
	Using the .cppo.ml Style Like the ocamlbuild Plugin

	Defining a Library with C Stubs
	Defining a Library with C Stubs using pkg-config
	Using a Custom Code Generator
	Defining Tests
	Building a Custom Toplevel

	Command-Line Interface
	Initializing Components
	Initializing a Project
	Initializing an Executable
	Initializing a Library
	Initializing Components in a Specified Directory
	Learning More About the init Commands

	Finding the Root
	Current Directory
	Forcing the Root (for Scripts)

	Interpretation of Targets
	Resolution
	Variables for Artifacts

	Finding External Libraries
	Running Tests
	Watch Mode
	Launching the Toplevel (REPL)
	Requirements & Limitations

	Restricting the Set of Packages
	Distributing Projects
	dune subst
	Custom Build Directory
	Installing a Package
	Via opam
	Manually
	Destination Directory
	Relocation Mode

	Querying Merlin Configuration
	Printing the Configuration
	Printing an Approximated .merlin
	Non-Standard Filenames

	Running a Coq Toplevel

	How-to Guides
	How to Install Dune
	How to Set up Automatic Formatting
	Setting Up the Environment
	Running the Formatters
	Setting Up Your CI

	How to Generate Opam Files from dune-project
	Declaring Package Dependencies
	For a New Package (No Existing Opam File)
	For an Existing Package
	General Notes and Tips

	Generating Opam Files

	Cross-Compilation
	How Does it Work?

	Dealing with Foreign Libraries
	Adding C/C++ Stubs to an OCaml Library
	Header Files
	Installing Header Files

	Stub Generation with Dune Ctypes
	A Toy Example
	Ctypes Field Reference

	Foreign Build Sandboxing
	Limitations
	Real Example

	Generating Documentation
	Prerequisites
	Writing Documentation
	Building Documentation
	Documentation Stanza: Examples
	Package Entry Page

	Passing Options to odoc
	Local Documentation Search Using Sherlodoc

	How to Load Additional Files at Runtime
	Sites
	Defining a Site
	Adding Files to a Site
	Getting the Locations of a Site at Runtime
	Tests
	Installation
	Implementation Details

	Plugins and Dynamic Loading of Packages
	Example
	Directory structure
	Main Executable (C)
	The Plugin “plugin1”
	Running the Example

	Instrumentation
	Specifying What to Instrument
	Enabling/Disabling Instrumentation
	Declaring an Instrumentation Backend

	JavaScript Compilation With Js_of_ocaml
	Compiling to JS
	Separate Compilation

	JavaScript Compilation With Melange
	Introduction
	Simple Project
	Libraries
	melange.emit
	Recommended Practices
	Keep Bundles Small by Reducing the Number of melange.emit Stanzas
	Faster Builds With subdir and dirs Stanzas

	Virtual Libraries & Variants
	Virtual Library
	Implementation
	Variants
	Default Implementation
	Limitations

	Writing and Running Tests
	Running Tests
	Running a Single Test
	Running Tests in a Directory

	Inline Tests
	Inline Expectation Tests
	Running a Subset of the Test Suite
	Running Tests in Bytecode or JavaScript
	Specifying Inline Test Dependencies
	Passing Special Arguments to the Test Runner
	Passing Special Arguments to the Test Executable
	Using Additional Libraries in the Test Runner
	Changing the Flags of the Linking Step of the Test Runner
	Defining Your Own Inline Test Backend
	Example of Backend

	Custom Tests
	Diffing the Result

	Cram Tests
	File Tests
	Directory Tests
	Testing an OCaml Program
	Sandboxing
	Test Output Sanitation

	How to Bundle Resources
	Folder Structure
	Dune Configuration
	Using the Bundled Resource

	How to Load a Project in a Toplevel
	Building a Specialized UTop Executable
	Loading the Project in a Toplevel
	Loading a Single Module in a Toplevel

	Using Rule Generation
	The Generate-Include-Commit Pattern
	Generating a dune.inc File
	Including it in the Main dune File
	Commit the Generated Code In The Source Repository
	Notes

	Using (dynamic_include)
	Notes

	Reference Manual
	dune
	executable
	Linking Modes
	js_of_ocaml

	executables
	library
	foreign_library
	deprecated_library_name
	generate_sites_module
	test
	tests
	Cram
	toplevel
	documentation
	install
	Including Files in the Install Stanza
	Globs in the Install Stanza
	Installing Globs from Parent Directories
	Handling of the .exe Extension on Windows
	Installing Source Directories

	plugin
	rule
	Modes
	Inferred Rules
	Directory targets

	alias
	copy_files
	include
	dynamic_include
	env
	dirs
	data_only_dirs
	ignored_subdirs
	include_subdirs
	vendored_dirs
	subdir
	cinaps
	coq.theory
	mdx
	Upgrading from Version 0.1

	menhir
	ocamllex
	ocamlyacc
	external_variant
	jbuild_version

	dune-project
	accept_alternative_dune_file_name
	cram
	dialect
	Default dialects
	executables_implicit_empty_intf
	expand_aliases_in_sandbox
	explicit_js_mode
	formatting
	generate_opam_files
	implicit_transitive_deps
	map_workspace_root
	name
	opam_file_location
	package
	subst
	use_standard_c_and_cxx_flags
	using
	version
	warnings
	wrapped_executables

	dune-workspace
	config stanzas
	context
	env
	profile

	config
	action_stdout_on_success
	action_stderr_on_success
	cache
	cache-check-probability
	cache-storage-mode
	display
	jobs
	sandboxing_preference
	terminal-persistence

	Lexical Conventions
	Comments
	Atoms
	Strings
	End of Line Strings
	Lists

	Actions
	run
	system
	bash
	dynamic-run
	chdir
	setenv
	with-accepted-exit-codes
	echo
	with-<outputs>-to
	with-stdin-from
	ignore-<outputs>
	cat
	copy
	copy#
	write-file
	pipe-<outputs>
	diff
	diff?
	cmp
	progn
	concurrent
	no-infer

	Ordered Set Language
	Boolean Language
	Predicate Language
	Library Dependencies
	Alternative Dependencies
	Re-Exported Dependencies

	Preprocessing Specification
	no_preprocessing
	Preprocessing With Actions
	Using PPX Rewriters
	Arguments to PPX Rewriters
	Future Syntax
	Per-Module Preprocessing Specification
	Preprocessor Dependencies

	Cram Tests
	Synopsis
	Examples
	Simple Commands
	Output
	Comments
	Continuation Lines
	Exit Codes

	Syntax Details
	File and Directory Tests
	Executing Cram Tests

	Scopes
	Variables
	Expansion of Lists

	Dependency Specification
	Named Dependencies
	Glob

	OCaml Flags
	Sandboxing
	Per-Action Sandboxing Configuration
	Global Sandboxing Configuration

	Locks
	Diffing and Promotion
	Promotion

	Package Specification
	Declaring a Package
	Attaching Elements to a Package
	Sites of a Package
	Libraries
	Executables
	Other Files

	Aliases
	Model and Syntax
	User-Defined Aliases
	Built-In Aliases
	@all
	@check
	@default
	@doc
	@doc-json
	@doc-private
	@fmt
	@install
	@lint
	@runtest

	Foreign Sources, Archives, and Objects
	Foreign Stubs
	Mode-Dependent Stubs

	Foreign Archives
	Extra Objects
	Flags

	Command Line Interface
	Dune Libraries
	Configurator
	Usage
	Upgrading From the Old Configurator

	dune-build-info Library
	(Experimental) Dune Action Plugin

	Dune Cache
	Configuration
	Cache Storage Mode
	The hardlink Mode
	The copy Mode

	Trimming the Cache
	Reproducibility
	Reproducibility Check
	Non-Reproducible Rules

	Coq
	Introduction
	coq.theory
	Coq Dependencies
	Coq Documentation
	Recursive Qualification of Modules
	How Dune Locates and Builds theories
	Public and Private Theories
	Limitations
	Coq Language Version
	Coq Language Version 1.0

	coq.extraction
	coq.pp
	Examples of Coq Projects
	Simple Project
	Multi-Theory Project
	Composing Projects
	Composing With Installed Theories
	Building Documentation
	Coq Plugin Project

	Running a Coq Toplevel
	Limitations

	Coq-Specific Variables
	Coq Environment Fields

	Dune RPC
	dune-rpc library
	Connecting

	Packages
	How Dune Knows About Packages
	Generating Opam Files
	What Dune Installs

	Findlib Integration
	How Dune Interprets META files
	The Special Case of the OCaml Compiler
	How Dune Generates META Files

	Explanation
	How Preprocessing Works
	The OCaml Ecosystem
	The OCaml Compiler Distribution: Compiling and Linking
	Findlib: Metadata for Libraries
	Opam: a Collection of Software Projects
	Dune: Giving Structure to Your Source Tree
	How Dune Integrates With the Ecosystem
	Dune is Opinionated

	How Dune integrates with opam
	Substitution
	Opam Variables
	What -p Means
	The Targets We’re Building
	What Opam Expects From Dune

	How Dune Uses Dune to Build Dune
	boot/bootstrap.ml
	Completing the Opam Installation
	make dev: Everything Else

	The Dune Mental Model
	How Dune Works
	An Example
	Configuration Generation
	Building the Executable
	Running the Tests

	What to Build
	How Dune Interprets Rules
	Conclusion

	Advanced Topics
	Dynamic Loading of Packages with Findlib
	Profiling Dune
	Package Version
	OCaml Syntax
	Variables for Artifacts
	Building an Ad Hoc .cmxs

	Miscellaneous
	FAQ
	Why Do Many Dune Projects Contain a Makefile?
	How to Add a Configure Step to a Dune Project
	Can I Use topkg with Dune?
	How Do I Publish My Packages with Dune?
	Where Can I Find Some Examples of Projects Using Dune?
	What is Jenga?
	How to Make Warnings Non-Fatal
	How to Turn Specific Errors into Warnings
	How to Display the Output of Commands as They Run
	How Can I Generate an mli File From an ml File
	How Can I Build a Single Library?
	Files and Directories Whose Names Begin with “.” (Period) are Ignored by source_tree
	How Can I Write Inline Tests in a Package Without my Users Needing to Install ppx_inline_test?

	Goal of Dune
	Have Excellent Backward-Compatibility Properties
	Have a Robust and Scalable Core
	Remain a No-Brainer Dependency
	Remain Accessible
	Have Excellent Support for the OCaml Language
	Be Extensible

	Working on the Dune Codebase
	Dependencies
	Bootstrapping
	Writing Tests
	Guidelines

	Setting Up Your Development Environment Using Nix
	Releasing Dune
	Major & Feature Releases
	Point Releases

	Adding Stanzas
	Versioning
	Experimental & Independent Extensions

	Dune Rules
	Creating Rules
	Loading Rules

	Documentation
	Structure
	ReStructured Text
	Style

	Vendoring
	General Guidelines
	Subjective Style Points

	Benchmarking
	Dune Bench
	Inline Benchmarks
	Build-Time Benchmarks
	Melange Bench
	Monorepo Benchmark

	Formatting

	Index

